The Rayleigh–Bénard Problem for Compressible Fluid Flows

被引:0
|
作者
Eduard Feireisl
Agnieszka Świerczewska-Gwiazda
机构
[1] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Institute of Applied Mathematics and Mechanics
[2] University of Warsaw,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the physically relevant fully compressible setting of the Rayleigh–Bénard problem of a fluid confined between two parallel plates, heated from the bottom, and subjected to gravitational force. Under suitable restrictions imposed on the constitutive relations we show that this open system is dissipative in the sense of Levinson, meaning there exists a bounded absorbing set for any global-in-time weak solution. In addition, global-in-time trajectories are asymptotically compact in suitable topologies and the system possesses a global compact trajectory attractor A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. The standard technique of Krylov and Bogolyubov then yields the existence of an invariant measure—a stationary statistical solution sitting on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document}. In addition, the Birkhoff–Khinchin ergodic theorem provides convergence of ergodic averages of solutions belonging to A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} a.s. with respect to the invariant measure.
引用
收藏
相关论文
共 50 条
  • [1] The Rayleigh-Benard Problem for Compressible Fluid Flows
    Feireisl, Eduard
    Swierczewska-Gwiazda, Agnieszka
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (01)
  • [2] The onset of convection in the Rayleigh-Bénard problem for compressible fluids
    Andreas S. Bormann
    Continuum Mechanics and Thermodynamics, 2001, 13 : 9 - 23
  • [3] Nonequilibrium fluctuations in the Rayleigh-Bénard problem for binary fluid mixtures
    J. M. Ortiz de Zárate
    F. Peluso
    J. V. Sengers
    The European Physical Journal E, 2004, 15 : 319 - 333
  • [4] Kinetic study of the Rayleigh-Bénard flows
    ZHANG Jun & FAN Jing Laboratory of High Temperature Gas Dynamics
    Science Bulletin, 2009, (03) : 364 - 368
  • [5] A Schwarz Method for a Rayleigh–Bénard Problem
    H. Herrero
    F. Pla
    M. Ruiz-Ferrández
    Journal of Scientific Computing, 2019, 78 : 376 - 392
  • [6] Well-posedness for compressible Rayleigh-Bénard convection
    Dongfen Bian
    Boling Guo
    Frontiers of Mathematics in China, 2013, 8 : 1253 - 1264
  • [7] Well-posedness for compressible Rayleigh-B,nard convection
    Bian, Dongfen
    Guo, Boling
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (06) : 1253 - 1264
  • [8] Existence and Homogenization of the Rayleigh-Bénard Problem
    Björn Birnir
    Nils Svanstedt
    Journal of Nonlinear Mathematical Physics, 2000, 7 (2) : 136 - 169
  • [9] SOME ASPECTS OF RAYLEIGH PROBLEM FOR A COMPRESSIBLE FLUID
    HOWARTH, L
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1951, 4 (02): : 157 - 169
  • [10] The Rayleigh–Bénard problem for a fluid with pressure- and temperature-dependent material properties
    Lorenzo Fusi
    Luigi Vergori
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74