The Sharp Weighted Bound for Multilinear Maximal Functions and Calderón–Zygmund Operators

被引:4
作者
Kangwei Li
Kabe Moen
Wenchang Sun
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] University of Alabama,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2014年 / 20卷
关键词
Multiple weights; Multilinear maximal function; Multilinear Calderón–Zygmund operators; Weighted estimates; 42B20; 42B25; 47H60;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the weighted bounds for multilinear maximal functions and Calderón–Zygmund operators from Lp1(w1)×⋯×Lpm(wm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p_1}(w_1)\times \cdots \times L^{p_m}(w_m)$$\end{document} to Lp(vw→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(v_{\vec {w}})$$\end{document}, where 1<p1,⋯,pm<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p_1,\cdots ,p_m<\infty $$\end{document} with 1/p1+⋯+1/pm=1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/{p_1}+\cdots +1/{p_m}=1/p$$\end{document} and w→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {w}$$\end{document} is a multiple AP→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\vec {P}}$$\end{document} weight. We prove the sharp bound for the multilinear maximal function for all such p1,…,pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,\ldots , p_m$$\end{document} and prove the sharp bound for m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-linear Calderón–Zymund operators when p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}.
引用
收藏
页码:751 / 765
页数:14
相关论文
共 28 条
  • [1] Buckley S(1993)Estimates for operator norms on weighted spaces and reverse Jensen inequalities Trans. Amer. Math. Soc. 340 253-272
  • [2] Christ M(1987)Polynomial growth estimates for multilinear singular integral operators Acta Math. 159 51-80
  • [3] Journé J-L(1975)On commutators of singular integrals and bilinear singular integrals Trans. Amer. Math. Soc. 212 315-331
  • [4] Coifman RR(1978)Commutateurs d’intégrales singulières et opérateurs multilinéaires Ann. Inst. Fourier (Grenoble) 28 177-202
  • [5] Meyer Y(2012)Sharp weighted estimates for classical operators Adv. Math. 229 408-441
  • [6] Coifman RR(2002)Multilinear Calderón–Zygmund theory Adv. Math. 165 124-164
  • [7] Meyer Y(2012)The sharp weighted bound for general Calderón–Zygmund operators Ann. Math. 175 1473-1506
  • [8] Cruz-Uribe D(1999)Multilinear estimates and fractional integration Math. Res. Lett. 6 1-15
  • [9] Martell JM(2010)Sharp Math. Ann. 348 127-141
  • [10] Pérez C(2008) inequality for Haar shift operators Proc. Am. Math. Soc. 136 2829-2833