Unsupervised Domain Adaptation in the Wild via Disentangling Representation Learning

被引:0
|
作者
Haoliang Li
Renjie Wan
Shiqi Wang
Alex C. Kot
机构
[1] Nanyang Technological University,Rapid
[2] City University of Hong Kong,Rich Object Search Lab
来源
关键词
In the wild; Cross-domain; Recognition; Segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Most recently proposed unsupervised domain adaptation algorithms attempt to learn domain invariant features by confusing a domain classifier through adversarial training. In this paper, we argue that this may not be an optimal solution in the real-world setting (a.k.a. in the wild) as the difference in terms of label information between domains has been largely ignored. As labeled instances are not available in the target domain in unsupervised domain adaptation tasks, it is difficult to explicitly capture the label difference between domains. To address this issue, we propose to learn a disentangled latent representation based on implicit autoencoders. In particular, a latent representation is disentangled into a global code and a local code. The global code is capturing category information via an encoder with a prior, and the local code is transferable across domains, which captures the “style” related information via an implicit decoder. Experimental results on digit recognition, object recognition and semantic segmentation demonstrate the effectiveness of our proposed method.
引用
收藏
页码:267 / 283
页数:16
相关论文
共 50 条
  • [21] Representation learning via serial robust autoencoder for domain adaptation
    Yang, Shuai
    Zhang, Yuhong
    Wang, Hao
    Li, Peipei
    Hu, Xuegang
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 160
  • [22] Learning intra-domain style-invariant representation for unsupervised domain adaptation of semantic segmentation
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    PATTERN RECOGNITION, 2022, 132
  • [23] Domain-invariant representation learning using an unsupervised domain adversarial adaptation deep neural network
    Jia, Xibin
    Jin, Ya
    Su, Xing
    Hu, Yongli
    NEUROCOMPUTING, 2019, 355 : 209 - 220
  • [24] Attention-Enhanced Disentangled Representation Learning for Unsupervised Domain Adaptation in Cardiac Segmentation
    Sun, Xiaoyi
    Liu, Zhizhe
    Zheng, Shuai
    Lin, Chen
    Zhu, Zhenfeng
    Zhao, Yao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 745 - 754
  • [25] TLR: TRANSFER LATENT REPRESENTATION FOR UNSUPERVISED DOMAIN ADAPTATION
    Xiao, Pan
    Du, Bo
    Wu, Jia
    Zhang, Lefei
    Hu, Ruimin
    Li, Xuelong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [26] Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
    Long, Quanyu
    Luo, Tianze
    Wang, Wenya
    Pan, Sinno Jialin
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 2982 - 2995
  • [27] Unsupervised domain adaptation via feature transfer learning based on elastic embedding
    Yang, Liran
    Lu, Bin
    Zhou, Qinghua
    Su, Pan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3081 - 3094
  • [28] SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION VIA DENOISING MUTUAL LEARNING
    Hao, Zhang
    Liang, Tian
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [29] Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation
    Chen, Qipeng
    Zhang, Haofeng
    Ye, Qiaolin
    Zhang, Zheng
    Yang, Wankou
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (01) : 175 - 185
  • [30] Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation
    Qipeng Chen
    Haofeng Zhang
    Qiaolin Ye
    Zheng Zhang
    Wankou Yang
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 175 - 185