Existence of infinitely many positive radial solutions for an iterative system of nonlinear elliptic equations on an exterior domain

被引:0
作者
Mahammad Khuddush
K. Rajendra Prasad
机构
[1] Dr. Lankapalli Bullayya College of Engineering,Department of Mathematics
[2] College of Science and Technology Andhra University,Department of Applied Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Nonlinear elliptic systems; Exterior domain; Positive radial solution; Krasnoselskii’s fixed point theorem; 35J66; 35J60; 34B18; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper by an application of Krasnoselskii’s fixed point theorem, we establish the existence of infinitely many positive radial solutions to the iterative system of nonlinear elliptic equations of the form Δvj+(N-2)2r02N-2|x|2N-2vj+Q(|x|)gj(vj+1)=0,x∈Ω,vj|∂Ω=0,lim|x|→∞vj(x)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{aligned}&\varDelta { v_{\mathtt {j}}}+\frac{(N-2)^2r_0^{2N-2}}{\vert \mathtt {x}\vert ^{2N-2}}v_\mathtt {j}+\mathtt {Q}(\vert \mathtt {x}\vert )\mathtt {g}_{\mathtt {j}}( v_{\mathtt {j}+1})=0,~~\mathtt {x}\in \varOmega ,\\&\quad v_{\mathtt {j}}\vert _{\partial \varOmega }=0,~ \lim _{\vert \mathtt {x}\vert \rightarrow \infty }v_{\mathtt {j}}(\mathtt {x})=0, \end{aligned} \end{aligned}$$\end{document}where j∈{1,2,3,…,m},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {j}\in \{1,2,3,\ldots ,m\},$$\end{document}v1=vm+1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ v_1= v_{m+1},$$\end{document}Δv=div(∇v),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta v=\mathtt {div}(\nabla v),$$\end{document}N>2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2,$$\end{document}0<r0<π/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_0<\pi /2,$$\end{document}Ω={v∈RN||v|>r0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega =\{ v\in \mathbb {R}^N|~\vert v\vert >r_0\},$$\end{document}Q=∏i=1nQi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Q}=\prod _{i=1}^{n}\mathtt {Q}_i,$$\end{document} each Qi:(r0,+∞)→(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {Q}_i:(r_0,+\infty )\rightarrow (0,+\infty )$$\end{document} is continuous, rN-1Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^{N-1}\mathtt {Q}$$\end{document} is integrable, may have singularities, and gj:[0,+∞)→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {g}_\mathtt {j}:[0,+\infty )\rightarrow \mathbb {R}$$\end{document} is continuous.
引用
收藏
相关论文
共 77 条
  • [1] Aberqi A(2019)Nonlinear elliptic equations with some measure data in Musielak–Orlicz spaces Nonlinrear Dyn. Syst. Theory 19 227-242
  • [2] Bennouna J(2018)Existence of multiple positive radial solutions to elliptic equations in an annulus Com. App. Anal. 22 669-680
  • [3] Elmassoudi M(2006)Multiple positive solutions for classes of elliptic systems with combined nonlinear effects Differ. Integral Equ. 19 307-324
  • [4] Ali J(2011)Positive solutions for Differ. Integral Equ. 24 21-34
  • [5] Padhi S(2020) elliptic systems with combined nonlinear effects Pan. Am. Math. J. 30 559-568
  • [6] Ali J(2000)On local existence and blow-up solutions for a time-space fractional variable order superdiffusion equation with exponential nonlinearity Nonlinear Anal. 39 93-109
  • [7] Shivaji R(2019)Existence and uniqueness of positive solutions of semilinear elliptic systems Nonlinear Anal. 187 45-52
  • [8] Ramaswamy M(2017)Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains Gen. Math. 25 761-767
  • [9] Ali J(2006)On nonexistence of solutions to a nonlinear Cauchy problem for a higher order hyperbolic equation J. Math. Anal. Appl. 313 137-141
  • [10] Brown K(2004)Uniqueness of positive solutions for semilinear elliptic systems Proc. R. Soc. Edinb. Sect. A 134 396-402