Localization for Random Unitary Operators

被引:0
|
作者
Eman Hamza
Alain Joye
Günter Stolz
机构
[1] University of Alabama at Birmingham CH 452,Department of Mathematics
[2] Université de Grenoble,Institut Fourier
来源
关键词
localization; random unitary operator; orthogonal polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
We consider unitary analogs of one-dimensional Anderson models on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2(\mathbb{Z})$$\end{document} defined by the product Uω=DωS where S is a deterministic unitary and Dω is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of Uω is pure point almost surely for all values of the parameter of S. We provide similar results for unitary operators defined on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2(\mathbb{N})$$\end{document} together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunsky coefficients of constant modulus and correlated random phases
引用
收藏
页码:255 / 272
页数:17
相关论文
共 50 条