Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses

被引:0
|
作者
Abhishek Singh
Vishnu D. Rajput
Shivani Lalotra
Shreni Agrawal
Karen Ghazaryan
Jagpreet Singh
Tatiana Minkina
Priyadarshani Rajput
Saglara Mandzhieva
Athanasios Alexiou
机构
[1] Yerevan State University,Faculty of Biology
[2] Southern Federal University,Academy of Biology and Biotechnology
[3] Lovely Professional University,School of Agriculture
[4] Parul Institute of Applied Science,Department of Biotechnology
[5] Parul University,Department of Science and Engineering
[6] University Centre for Research and Development,undefined
[7] Chandigarh University,undefined
[8] Novel Global Community Educational Foundation,undefined
[9] AFNP Med,undefined
来源
关键词
Salinity stress; Ionic toxicity; Nanoparticles; ROS; Antioxidant enzymes;
D O I
暂无
中图分类号
学科分类号
摘要
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
引用
收藏
相关论文
共 50 条
  • [21] Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of Trigonella foenum-graecum under salinity stress
    Noohpisheh, Zahra
    Amiri, Hamzeh
    Mohammadi, Abdolnaser
    Farhadi, Saeed
    PLANT BIOSYSTEMS, 2021, 155 (02): : 267 - 280
  • [22] Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles
    Ali, Basharat
    Saleem, Muhammad Hamzah
    Ali, Shafaqat
    Shahid, Munazzam
    Sagir, Muhammad
    Tahir, Muhammad Bilal
    Qureshi, Kamal Ahmad
    Jaremko, Mariusz
    Selim, Samy
    Hussain, Afzal
    Rizwan, Muhammad
    Ishaq, Wajid
    Rehman, M. Zia-ur
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [23] Physiological, biochemical and elemental responses of grafted grapevines under drought stress: insights into tolerance mechanisms
    Krishankumar, Sonu
    Hunter, Jacobus J.
    Alyafei, Mohammed
    Hamed, Fathalla
    Subramaniam, Sreeramanan
    Ramlal, Ayyagari
    Kurup, Shyam S.
    Amiri, Khaled M. A.
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [24] Editorial: Hormones and biostimulants in plants: physiological and molecular insights on plant stress responses
    Jahan, Mohammad Shah
    Hasan, Md Mahadi
    Rahman, Md Atikur
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [25] Physiological and Molecular Responses of Barley Genotypes to Salinity Stress
    Jadidi, Omid
    Etminan, Alireza
    Azizi-Nezhad, Reza
    Ebrahimi, Asa
    Pour-Aboughadareh, Alireza
    GENES, 2022, 13 (11)
  • [26] Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress
    Abdelrady, Wessam A.
    Ma, Zhengxin
    Elshawy, Elsayed E.
    Wang, Lanlan
    Askri, Syed Muhammad Hassan
    Ibrahim, Zakir
    Dennis, Elvis
    Kanwal, Farah
    Zeng, Fanrong
    Shamsi, Imran Haider
    PLANT STRESS, 2024, 11
  • [27] Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation
    Noor, Maryam
    Fan, Ji-Biao
    Zhang, Jing-Xue
    Zhang, Chuan-Jie
    Sun, Sheng-Nan
    Gan, Lu
    Yan, Xue-Bing
    AGRONOMY-BASEL, 2023, 13 (01):
  • [28] Growth, Physiological, and Biochemical Responses of a Medicinal Plant Launaea sarmentosa to Salinity
    Tran, Dan Quang
    Pham, Anh Cong
    Nguyen, Trinh Thi Thanh
    Vo, Tuan Chau
    Vu, Hoang Duc
    Ho, Giap Ta
    Mohsin, Sayed Mohammad
    HORTICULTURAE, 2024, 10 (04)
  • [29] Understanding the physiological and molecular mechanism of salinity stress tolerance in plants
    Anwar, Ali
    Zhang, Shu
    He, Lilong
    Gao, Jianwei
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (04)
  • [30] Zinc oxide nanoparticles application alleviates salinity stress by modulating plant growth, biochemical attributes and nutrient homeostasis in Phaseolus vulgaris L
    Gupta, Aayushi
    Bharati, Rohit
    Kubes, Jan
    Popelkova, Daniela
    Praus, Lukas
    Yang, Xinghong
    Severova, Lucie
    Skalicky, Milan
    Brestic, Marian
    FRONTIERS IN PLANT SCIENCE, 2024, 15