Multilevel ensemble Kalman filtering for spatio-temporal processes

被引:0
|
作者
Alexey Chernov
Håkon Hoel
Kody J. H. Law
Fabio Nobile
Raul Tempone
机构
[1] Carl von Ossietzky University Oldenburg,Institute for Mathematics
[2] RWTH Aachen University,Chair of Mathematics for Uncertainty Quantification
[3] University of Manchester,Department of Mathematics
[4] École polytechnique fédérale de Lausanne,Institute of Mathematics
[5] KAUST,Applied Mathematics and Computational Sciences
来源
Numerische Mathematik | 2021年 / 147卷
关键词
65C30; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We design and analyse the performance of a multilevel ensemble Kalman filter method (MLEnKF) for filtering settings where the underlying state-space model is an infinite-dimensional spatio-temporal process. We consider underlying models that needs to be simulated by numerical methods, with discretization in both space and time. The multilevel Monte Carlo sampling strategy, achieving variance reduction through pairwise coupling of ensemble particles on neighboring resolutions, is used in the sample-moment step of MLEnKF to produce an efficent hierarchical filtering method for spatio-temporal models. Under sufficent regularity, MLEnKF is proven to be more efficient for weak approximations than EnKF, asymptotically in the large-ensemble and fine-numerical-resolution limit. Numerical examples support our theoretical findings.
引用
收藏
页码:71 / 125
页数:54
相关论文
共 50 条
  • [1] Multilevel ensemble Kalman filtering for spatio-temporal processes
    Chernov, Alexey
    Hoel, Hakon
    Law, Kody J. H.
    Nobile, Fabio
    Tempone, Raul
    NUMERISCHE MATHEMATIK, 2021, 147 (01) : 71 - 125
  • [2] Multivariate Kalman filtering for spatio-temporal processes
    Guillermo Ferreira
    Jorge Mateu
    Emilio Porcu
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 4337 - 4354
  • [3] Multivariate Kalman filtering for spatio-temporal processes
    Ferreira, Guillermo
    Mateu, Jorge
    Porcu, Emilio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (12) : 4337 - 4354
  • [4] MULTILEVEL ENSEMBLE KALMAN FILTERING
    Hoel, Hakon
    Law, Kody J. H.
    Tempone, Raul
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1813 - 1839
  • [5] Efficient spatio-temporal Gaussian regression via Kalman filtering
    Todescato, Marco
    Carron, Andrea
    Carli, Ruggero
    Pillonetto, Gianluigi
    Schenato, Luca
    AUTOMATICA, 2020, 118
  • [6] Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking
    Yang, Haoran
    Wang, Juanjuan
    Miao, Yi
    Yang, Yulu
    Zhao, Zengshun
    Wang, Zhigang
    Sun, Qian
    Wu, Dapeng Oliver
    MATHEMATICS, 2019, 7 (11)
  • [7] Spatio-temporal EEG brain imaging based on reduced Kalman filtering
    Lopez, J. D.
    Espinosa, J. J.
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 64 - 67
  • [8] Spatio-temporal processes
    Harvill, Jane L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03) : 375 - 382
  • [9] Spatio-temporal dynamic model and parallelized ensemble Kalman filter for precipitation data
    Sanchez, Luis
    Infante, Saba
    Griffin, Victor
    Rey, Demetrio
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (04) : 653 - 675
  • [10] Spatio-temporal filtering using wavelets
    M. D. Ruiz-Medina
    J. M. Angulo
    Stochastic Environmental Research and Risk Assessment, 2002, 16 : 241 - 266