Some explicit solutions of c-optimal design problems for polynomial regression with no intercept

被引:0
作者
Holger Dette
Viatcheslav B. Melas
Petr Shpilev
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik
[2] St. Petersburg State University,Mathematics and Mechanics Faculty
来源
Annals of the Institute of Statistical Mathematics | 2021年 / 73卷
关键词
Polynomial regression; Extrapolation; Slope estimation; -optimal designs;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the optimal design problem for extrapolation and estimation of the slope at a given point, say z, in a polynomial regression with no intercept. We provide explicit solutions of these problems in many cases and characterize those values of z, where this is not possible.
引用
收藏
页码:61 / 82
页数:21
相关论文
共 40 条
  • [1] Chang F-C(1996)E-optimal designs for polynomial regression without intercept Journal of Statistical Planning and Inference 55 371-387
  • [2] Heiligers B(1997)-optimal designs for weighted polynomial regression Journal of Statistical Planning and Inference 62 317-331
  • [3] Chang F-C(1990)A generalization of Annals of Statistics 18 1784-1805
  • [4] Lin G-C(2001)- and Annals of Statistics 29 1024-1049
  • [5] Dette H(2000)-optimal designs in polynomial regression Annals of the Institute of Statistical Mathematics 52 557-573
  • [6] Dette H(2004)Robust designs for polynomial regression by maximizing a minimum of Journal of Statistical Planning and Inference 118 201-219
  • [7] Franke T(2010) and Statistics 44 617-628
  • [8] Dette H(1993)-efficiencies Annals of Statistics 21 416-433
  • [9] Huang M-NL(1996)Convex optimal designs for compound polynomial extrapolation Biometrika 83 667-680
  • [10] Dette H(1952)Optimal designs for estimating individual coefficients in polynomial regressiona functional approach The Annals of Mathematical Statistics 23 255-262