Moderate deviations and central limit theorem for positive diffusions

被引:0
作者
Yumeng Li
Shuguang Zhang
机构
[1] University of Science and Technology of China,Department of Statistics and Finance
来源
Journal of Inequalities and Applications | / 2016卷
关键词
moderate deviations; central limit theorem; CEV; CIR; 60H10; 60F05; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish a central limit theorem and a moderate deviation principle for the positive diffusions, including the CEV and CIR models. The proof is based on the exponential approximations theorem and Burkholder-Davis-Gundy’s inequality.
引用
收藏
相关论文
共 18 条
[1]  
Baldi P(2011)General Freidlin-Wentzell large deviations and positive diffusions Stat. Probab. Lett. 81 1218-1229
[2]  
Caramellino L(2015)Verhulst versus CIR Lith. Math. J. 55 119-133
[3]  
Mackevic̆ius V(2004)Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes Probab. Theory Relat. Fields 129 261-289
[4]  
Donati-Martin C(2012)The sharp lower bound of asymptotic efficiency of estimators in the zone of moderate deviation probabilities Electron. J. Stat. 6 2150-2184
[5]  
Rouault A(2011)Delta method in large deviations and moderate deviations for estimators Ann. Stat. 39 1211-1240
[6]  
Yor M(2009)Moderate deviation principle for autoregressive processes J. Multivar. Anal. 100 1952-1961
[7]  
Zani M(2013)Averaging principle of SDE with small diffusion: moderate deviations Ann. Probab. 31 413-443
[8]  
Ermakov M(2015)Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise Potential Anal. 42 99-113
[9]  
Gao F(2014)Moderate deviations and central limit theorem for small perturbation Wishart processes Front. Math. China 9 1-15
[10]  
Zhao X(undefined)undefined undefined undefined undefined-undefined