Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\bf R}^{n}$\end{document}

被引:0
作者
Yoshihiro Mizuta
Eiichi Nakai
Takao Ohno
Tetsu Shimomura
机构
[1] Hiroshima University,Department of Mathematics, Graduate School of Science
[2] Ibaraki University,Department of Mathematics
[3] Oita University,Faculty of Education and Welfare Science
[4] Hiroshima University,Department of Mathematics, Graduate School of Education
关键词
Maximal functions; Musielak-Orlicz-Morrey space of variable exponent; Riesz potential; Sobolev embeddings; Sobolev’s inequality; 31B15; 46E30;
D O I
10.1007/s13163-011-0074-7
中图分类号
学科分类号
摘要
Our aim in this paper is to deal with Sobolev embeddings for Riesz potentials of variable order with functions in variable exponent Musielak-Orlicz-Morrey spaces.
引用
收藏
页码:413 / 434
页数:21
相关论文
共 80 条
  • [1] Acerbi E.(2002)Regularity results for stationary electro-rheological fluids Arch. Ration. Mech. Anal. 164 213-259
  • [2] Mingione G.(2005)Gradient estimates for the J. Reine Angew. Math. 584 117-148
  • [3] Acerbi E.(1975)( Duke Math. J. 42 765-778
  • [4] Mingione G.(2008))-Laplacian system Georgian Math. J. 15 195-208
  • [5] Adams D.R.(2009)A note on Riesz potentials Nonlinear Anal. 70 567-583
  • [6] Almeida A.(2007)Maximal and potential operators in variable exponent Morrey spaces Rev. Mat. Iberoam. 23 743-770
  • [7] Hasanov J.(2006)Renormalized solutions for nonlinear elliptic equations with variable exponents and SIAM J. Appl. Math. 66 1383-1406
  • [8] Samko S.(1987) data Rend. Mat. Appl. 7 273-279
  • [9] Bendahmane M.(2009)The fractional maximal operator on variable Trans. Am. Math. Soc. 361 2631-2647
  • [10] Wittbold P.(2006) spaces Ann. Acad. Sci. Fenn. Math. 31 239-264