Modeling of Plastic Deformation of Dispersion-Hardened Materials with L12 Superstructure Particles

被引:0
|
作者
O. I. Daneyko
T. A. Kovalevskaya
N. A. Kulaeva
机构
[1] Tomsk State University of Architecture and Building,
来源
Russian Physics Journal | 2017年 / 60卷
关键词
dispersion-hardened materials; nanoscale particles; mathematical model; strain hardening; 1; superstructure; deformation defects; dislocations;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a mathematical model of plastic deformation in FCC materials strengthened with particles having L12 superstructure. The model is based on balance equations for various deformation defects with regard to their transformation during plastic deformation. Research results show that the size and distance between particles of the strengthening phase affect the thermal strengthening, strain hardening and the evolution of the dislocation subsystem of the FCC alloy strengthened with coherent particles with L12 superstructure. The temperature anomaly is detected for strength properties of materials having different volume fractions of the strengthening phase. It is shown that the incoherent strengthening phase increases the flow stress of the material and suppresses the temperature anomaly of its strength properties.
引用
收藏
页码:508 / 514
页数:6
相关论文
共 50 条
  • [21] Evolution of Dislocation Subsystem Components During Plastic Deformation Depending on Parameters of Strengthening Phase with L12 Superstructure
    Daneyko, O. I.
    Kovalevskaya, T. A.
    Kulaeva, N. A.
    Kolupaeva, S. N.
    Shalygina, T. A.
    RUSSIAN PHYSICS JOURNAL, 2017, 60 (05) : 821 - 829
  • [22] Simulation of high-temperature superlocalization of plastic deformation in single-crystals of alloys with an L12 superstructure
    Yu. V. Solov’eva
    Ya. D. Fakhrutdinova
    V. A. Starenchenko
    The Physics of Metals and Metallography, 2015, 116 : 10 - 18
  • [23] Evolution of Dislocation Subsystem Components During Plastic Deformation Depending on Parameters of Strengthening Phase with L12 Superstructure
    O. I. Daneyko
    T. A. Kovalevskaya
    N. A. Kulaeva
    S. N. Kolupaeva
    Т. А. Shalygina
    Russian Physics Journal, 2017, 60 : 821 - 829
  • [24] Dispersion-hardened Al-Pb antifriction materials
    G. F. Lovshenko
    F. G. Lovshenko
    Powder Metallurgy and Metal Ceramics, 2007, 46 : 241 - 247
  • [25] Simulation of structural development of dispersion-hardened platinum materials
    Rettenmayr, M
    Song, X
    Oechsle, M
    Zeuner, S
    METALL, 2002, 56 (09): : 559 - 563
  • [26] Dispersion-hardened Al-Pb antifriction materials
    Lovshenko, G. F.
    Lovshenko, F. G.
    POWDER METALLURGY AND METAL CERAMICS, 2007, 46 (5-6) : 241 - 247
  • [27] Simulation of texturing in dispersion-hardened composites under plastic strain
    Abramova, VI
    Nikitin, AN
    Levin, DM
    INDUSTRIAL LABORATORY, 1999, 64 (09): : 583 - 585
  • [28] FATIGUE-STRENGTH OF DISPERSION-HARDENED AND MICROLAMINATED MATERIALS
    LUGOVSKOI, YF
    KUZMENKO, VA
    GRECHANYUK, NI
    SOVIET POWDER METALLURGY AND METAL CERAMICS, 1988, 27 (10): : 802 - 805
  • [29] PROPERTIES OF HEAT-TREATED AND DISPERSION-HARDENED MATERIALS
    STURGEON, GM
    ALEXANDER, JM
    JAGGER, FL
    KIRK, FA
    BOCKSTIEGEL, G
    ZAPF, G
    CRANE, LW
    FISCHMEISTER, HF
    LAWN, RE
    HUET, JJ
    DOWSON, AG
    BILLINGTON, JC
    HAZL, RJ
    CHATTERJEEFISCHER, R
    POWDER METALLURGY, 1977, 20 (01) : 53 - 55
  • [30] MICROMECHANICS OF TIME-DEPENDENT DEFORMATION IN A DISPERSION-HARDENED POLYCRYSTAL
    ZHU, ZG
    WENG, GJ
    ACTA MECHANICA, 1987, 69 (1-4) : 295 - 313