Identifying predictive hubs to condense the training set of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-nearest neighbour classifiers

被引:0
作者
Ludwig Lausser
Christoph Müssel
Alexander Melkozerov
Hans A. Kestler
机构
[1] University of Ulm,Research Group Bioinformatics and Systems Biology, Institute of Neural Information Processing
[2] Tomsk State University of Control Systems and Radioelectronics,Department of Television and Control
关键词
-Nearest neighbour; Classification; Genetic algorithm; Predictive hubs;
D O I
10.1007/s00180-012-0379-0
中图分类号
学科分类号
摘要
The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Nearest Neighbour classifier is widely used and popular due to its inherent simplicity and the avoidance of model assumptions. Although the approach has been shown to yield a near-optimal classification performance for an infinite number of samples, a selection of the most decisive data points can improve the classification accuracy considerably in real settings with a limited number of samples. At the same time, a selection of a subset of representative training samples reduces the required amount of storage and computational resources. We devised a new approach that selects a representative training subset on the basis of an evolutionary optimization procedure. This method chooses those training samples that have a strong influence on the correct prediction of other training samples, in particular those that have uncertain labels. The performance of the algorithm is evaluated on different data sets. Additionally, we provide graphical examples of the selection procedure.
引用
收藏
页码:81 / 95
页数:14
相关论文
共 45 条
[31]   Complexity of Σn0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^0_n$$\end{document}-classifications for definable subsets [J].
Svetlana Aleksandrova ;
Nikolay Bazhenov ;
Maxim Zubkov .
Archive for Mathematical Logic, 2023, 62 (1-2) :239-256
[32]   The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-cost minimization model for capacitated facility location-allocation problem with uncertain demands [J].
Meilin Wen ;
Zhongfeng Qin ;
Rui Kang .
Fuzzy Optimization and Decision Making, 2014, 13 (3) :345-356
[34]   Classification by decomposition: a novel approach to classification of symmetric 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} games [J].
Mikael Böörs ;
Tobias Wängberg ;
Tom Everitt ;
Marcus Hutter .
Theory and Decision, 2022, 93 (3) :463-508
[36]   Classification of extremal type II Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}-codes of length 24 [J].
Akihiro Munemasa ;
Rowena Alma L. Betty .
Designs, Codes and Cryptography, 2024, 92 (3) :771-785
[37]   On Z2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^s}$$\end{document}-linear Hadamard codes: kernel and partial classification [J].
Cristina Fernández-Córdoba ;
Carlos Vela ;
Mercè Villanueva .
Designs, Codes and Cryptography, 2019, 87 (2-3) :417-435
[38]   Complete Space-like λ-surfaces in the Minkowski Space ℝ13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ℝ_1^3$$\end{document} with the Second Fundamental Form of Constant Length [J].
Xing Xiao Li ;
Yang Yang Liu ;
Rui Na Qiao .
Acta Mathematica Sinica, English Series, 2020, 36 (5) :559-577
[39]   On Classification of (n+5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+5)$$\end{document}-Dimensional Nilpotent n-Lie Algebras of Class Two [J].
Zahra Hoseini ;
Farshid Saeedi ;
Hamid Darabi .
Bulletin of the Iranian Mathematical Society, 2019, 45 (4) :939-949
[40]   Multi-sample ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-mixup: richer, more realistic synthetic samples from a p-series interpolant [J].
Kumar Abhishek ;
Colin J. Brown ;
Ghassan Hamarneh .
Journal of Big Data, 11 (1)