The Range of Rademacher Series in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^d$$\end{document}

被引:0
作者
Chuntai Liu
机构
[1] Wuhan Polytechnic University,School of Mathematics and Computer Science
关键词
Rademacher series; level set; Hausdorff dimension; Primary 28A80; Secondary 47D20;
D O I
10.1007/s00025-019-0984-0
中图分类号
学科分类号
摘要
In this paper, we study Rademacher series with d-dimensional vector-valued coefficients. We first employ a new combinatorial technique to present a sufficient condition for the Rademacher range of a sequence with a unique direction equal to R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^2$$\end{document}. This result also gives a positive answer to the question that whether the Rademacher range of {(n-1,n-1ln-1(n+1))}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{(n^{-1},n^{-1}\ln ^{-1}(n+1))\}$$\end{document} is R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^2$$\end{document}. Next, by constructing homogeneous Cantor sets, we prove that, for each s∈[1,d]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in [1,d]$$\end{document}, there exists a sequence with a unique direction such that its Rademacher range of Hausdorff dimension s is dense in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^d$$\end{document} but not equal to Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^d$$\end{document}.
引用
收藏
相关论文
共 23 条
[1]  
Astashkin SV(2011)Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi-axis J. Funct. Anal. 260 195-207
[2]  
Beyer WA(1962)Hausdorff dimension of lever sets of some Rademacher series Pac. J. Math. 12 35-46
[3]  
Curbera GP(2003)Multiplication operators on the space of Rademacher series in rearrangement invariant spaces Math. Proc. Camb. Philos. Soc. 134 153-162
[4]  
Rodin VA(1993)The distribution of vector-value Rademacher series Ann. Probab. 21 2046-2052
[5]  
Dilworth SJ(2000)Individual behaviors of oriented walks Stoch. Process. Appl. 90 263-275
[6]  
Montgomery-Smit SJ(2015)On the range of Ann. Acad. Sci. Fenn. Math. 40 135-148
[7]  
Fan A-H(1993)Hausdorff dimension of the level sets of Rademacher series Bull. Polish Acad. Sci. Math. 41 11-18
[8]  
He X-G(1994)Hausdorff dimension of the graphs of the geometric Rademacher series Nanjing Daxue Xuebao Ziran Kexue Ban 30 12-16
[9]  
Liu C-T(1930)Le systeme orthorgonal de. M. Rademacher Stud. Math. 2 231-247
[10]  
Hu T-Y(2012)The Hausdorff dimension of level sets of Rademacher series (Chinese) Acta Math. Sin. (Chin. Ser.) 55 1013-1018