Robust monotone submodular function maximization

被引:0
作者
James B. Orlin
Andreas S. Schulz
Rajan Udwani
机构
[1] M.I.T.,
来源
Mathematical Programming | 2018年 / 172卷
关键词
90;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} elements from the chosen set. For the fundamental case of τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, we give a deterministic (1-1/e)-1/Θ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-1/\varTheta (m)$$\end{document} approximation algorithm, where m is an input parameter and number of queries scale as O(nm+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{m+1})$$\end{document}. In the process, we develop a deterministic (1-1/e)-1/Θ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-1/\varTheta (m)$$\end{document} approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized (1-1/e)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-\epsilon $$\end{document} approximation for constant τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and ϵ≤1Ω~(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}$$\end{document}, making O(n1/ϵ3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{1/\epsilon ^3})$$\end{document} queries. Further, for τ≪k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \ll \sqrt{k}$$\end{document}, we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
引用
收藏
页码:505 / 537
页数:32
相关论文
共 32 条
[1]  
Bertsimas D(2011)Theory and applications of robust optimization SIAM Rev. 53 464-501
[2]  
Brown D(2003)Robust discrete optimization and network flows Math. Program. 98 49-71
[3]  
Caramanis C(2004)The price of robustness Oper. Res. 52 35-53
[4]  
Bertsimas D(2011)Maximizing a monotone submodular function subject to a matroid constraint SIAM J. Comput. 40 1740-1766
[5]  
Sim M(1998)A threshold of ln n for approximating set cover J. ACM (JACM) 45 634-652
[6]  
Bertsimas D(2011)Maximizing non-monotone submodular functions SIAM J. Comput. 40 1133-1153
[7]  
Sim M(2011)Adaptive submodularity: Theory and applications in active learning and stochastic optimization J. Artif. Intell. Res. 42 427-486
[8]  
Calinescu G(2001)A combinatorial strongly polynomial algorithm for minimizing submodular functions J. ACM (JACM) 48 761-777
[9]  
Chekuri C(2008)Robust submodular observation selection J. Mach. Learn. Res. 9 2761-2801
[10]  
Pál M(1978)Best algorithms for approximating the maximum of a submodular set function Math. Oper. Res. 3 177-188