Differentiably simple Jordan algebras

被引:0
作者
A. A. Popov
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2013年 / 54卷
关键词
Jordan algebra; derivation; differentiably simple algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that each exceptional differentiably simple Jordan algebra over a field of characteristic 0 is an Albert ring whose elements satisfy a cubic equation with the coefficients in the center of the algebra. If the characteristic of the field is greater than 2 then such an algebra is the tensor product of its center and a central exceptional simple 27-dimensional Jordan algebra. Some remarks made on special algebras.
引用
收藏
页码:713 / 721
页数:8
相关论文
共 20 条
[1]  
Zassenhaus H(1939)Über Liesche Ringe mit Primzahlcharakteristik Abh. Math. Sem. Hansische Univ. 13 1-100
[2]  
Albert A A(1953)On commutative power-associative algebras of degree two Trans. Amer. Math. Soc. 74 323-343
[3]  
Posner E C(1960)Differentiably simple rings Proc. Amer. Math. Soc. 11 337-343
[4]  
Harper L R(1960)On differentiably simple algebras Trans. Amer. Math. Soc. 100 63-72
[5]  
Block R E(1969)Determination of the differentiably simple rings with a minimal ideal Ann. Math. 90 433-459
[6]  
Yuan S(1964)Differentiably simple rings of prime characteristic Duke Math. J. 31 623-630
[7]  
Martinez C(2001)Simple finite-dimensional Jordan superalgebras of prime characteristic J. Algebra 236 575-629
[8]  
Zelmanov E(1997)Prime alternative superalgebras of an arbitrary characteristic Algebra and Logic 36 701-731
[9]  
Shestakov I P(1995)Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras J. Algebra 173 1-43
[10]  
Cheng S-J(2010)Differentiably simple alternative algebras Algebra and Logic 49 456-469