Synchronization of a new fractional order chaotic system

被引:0
作者
Khan A. [1 ]
Khattar D. [2 ]
Agrawal N. [3 ]
机构
[1] Department of Mathematics, Jamia Millia Islamia, Delhi
[2] Department of Mathematics, Kirori Mal College, University of Delhi, Delhi
[3] Department of Mathematics, University of Delhi, Delhi
关键词
Chaotic system; Fractional order; Lü; system; Synchronization;
D O I
10.1007/s40435-017-0389-4
中图分类号
学科分类号
摘要
In this paper we have introduced a new fractional order chaotic system and investigated chaos synchronization between the new fractional order chaotic system and the Lü fractional order chaotic system using active control technique. Numerical simulations are carried out using Matlab to show the effectiveness of the method. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:1585 / 1591
页数:6
相关论文
共 31 条
  • [1] Pecora L., Carroll T., Synchronization in chaotic systems, Phys Rev Lett, 64, pp. 821-824, (1990)
  • [2] Sun H.H., Abdelwahad A.A., Onaral B., Linear approximation of transfer function with a pole of fractional order, IEEE Autom Control, 29, pp. 441-444, (1984)
  • [3] Bagley R.L., Calico R.A., Fractional order state equations for the control of viscoelastically damped structures, J Guid Control Dyn, 14, pp. 304-311, (1991)
  • [4] Koeller R.C., Applications of fractional calculus to the theory of viscoelasticity, J Appl Mech, 51, pp. 299-307, (1984)
  • [5] Ichise M., Nagayanagi Y., Kojima T., An analog simulation of noninteger order transfer functions for analysis of electrode processes, J Electroanal Chem Interfacial Electrochem, 33, pp. 253-265, (1971)
  • [6] Yau H.T., Pu Y.C., Li S.C., Application of a chaotic synchronization system to secure communication, Inf Technol Control, 41, pp. 274-282, (2012)
  • [7] Yeh J.P., Wu K.L., A simple method to synchronize chaotic systems and its application to secure communications, Math Comput Model, 47, pp. 894-902, (2008)
  • [8] Laskin N., Fractional market dynamics, Phys A, 287, pp. 482-492, (2000)
  • [9] Magin R.L., Fractional calculus models of complex dynamics in biological tissues, Comput Math Appl, 59, pp. 1586-1593, (2010)
  • [10] Zhang R., Yang S., Adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear Dyn, 66, pp. 831-837, (2011)