Low-light image enhancement with a refined illumination map

被引:0
|
作者
Shijie Hao
Zhuang Feng
Yanrong Guo
机构
[1] Hefei University of Technology,School of Computer and Information
来源
Multimedia Tools and Applications | 2018年 / 77卷
关键词
Image enhancement; Low light; Illumination map; Self-guided filtering;
D O I
暂无
中图分类号
学科分类号
摘要
It has become very popular to take photographs in everyone’s daily life. However, the visual quality of a photograph is not always guaranteed due to various factors. One common factor is the low-light imaging condition, which conceals visual information and degenerates the quality of a photograph. It is preferable for a low-light image enhancement model to complete the following tasks: improving contrast, preserving details, and keeping robust to noise. To this end, we propose a simple but effective enhancing model based on the simplified Retinex theory, of which the key is to estimate a good illumination map. In our model, we apply an iterative self-guided filter to refine the initial estimation of an illumination map, making it aware of local structure of image contents. In experiments, we validate the effectiveness of our method in various aspects, and compare our model with several state-of-the-art ones. The results show that our method effectively adjusts the global image contrast, recovers the concealed details and keeps the robustness against noise.
引用
收藏
页码:29639 / 29650
页数:11
相关论文
共 50 条
  • [1] Low-light image enhancement with a refined illumination map
    Hao, Shijie
    Feng, Zhuang
    Guo, Yanrong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29639 - 29650
  • [2] Low-Light Image Enhancement by Refining Illumination Map with Self-guided Filtering
    Feng, Zhuang
    Hao, Shijie
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 183 - 187
  • [3] Low-light image enhancement by deep learning network for improved illumination map
    Wang, Manli
    Li, Jiayue
    Zhang, Changsen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [4] A simple illumination map estimation based on Retinex model for low-light image enhancement
    Tang, Shiqiang
    Li, Changli
    Pan, Xinxin
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [5] The Retinex enhancement algorithm for low-light intensity image based on improved illumination map
    Weng, Ruidi
    Zhang, Ya
    Wu, Hanyang
    Wang, Weiyong
    Wang, Dongyun
    IET IMAGE PROCESSING, 2024, 18 (12) : 3381 - 3392
  • [6] Adaptive Illumination Estimation for Low-Light Image Enhancement
    Li, Lan
    Peng, Wen-Hao
    Duan, Zhao -Peng
    Pu, Sha-Sha
    ENGINEERING LETTERS, 2024, 32 (03) : 531 - 540
  • [7] A Deep Convolutional Neural Network-based Low-light Image Enhancement Using Illumination Map
    Wang, Liqian
    Shao, Wenze
    Ge, Qi
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [8] Illumination estimation for nature preserving low-light image enhancement
    Kavinder Singh
    Anil Singh Parihar
    The Visual Computer, 2024, 40 : 121 - 136
  • [9] Illumination estimation for nature preserving low-light image enhancement
    Singh, Kavinder
    Parihar, Anil Singh
    VISUAL COMPUTER, 2024, 40 (01) : 121 - 136
  • [10] Multiscale Low-Light Image Enhancement Network With Illumination Constraint
    Fan, Guo-Dong
    Fan, Bi
    Gan, Min
    Chen, Guang-Yong
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7403 - 7417