Further research on complete moment convergence for moving average process of a class of random variables

被引:0
|
作者
Yong Zhang
Xue Ding
机构
[1] Jilin University,College of Mathematics
来源
Journal of Inequalities and Applications | / 2017卷
关键词
complete moment convergence; moving average process; Rosenthal type maximal inequality; slowly varying function;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the complete moment convergence for the partial sum of moving average processes {Xn=∑i=−∞∞aiYi+n,n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{X_{n}=\sum_{i=-\infty}^{\infty}a_{i}Y_{i+n},n\geq 1\}$\end{document} is established under some mild conditions, where {Yi,−∞<i<∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{Y_{i},-\infty < i<\infty\}$\end{document} is a doubly infinite sequence of random variables satisfying the Rosenthal type maximal inequality and {ai,−∞<i<∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{a_{i},-\infty< i<\infty\}$\end{document} is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results given by Ko (J. Inequal. Appl. 2015:225, 2015).
引用
收藏
相关论文
共 50 条
  • [41] Complete moment convergence of moving-average processes under END assumptions
    Qu, Xiaoming
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (10) : 3446 - 3458
  • [42] ON THE COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES GENERATED BY rho*-MIXING SEQUENCES
    Ko, Mi-Hwa
    Kim, Tae-Sung
    Ryu, Dae-Hee
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (04): : 597 - 606
  • [43] Complete moment convergence of moving-average processes under dependence assumptions
    Li, YX
    Zhang, LX
    STATISTICS & PROBABILITY LETTERS, 2004, 70 (03) : 191 - 197
  • [44] On Complete and Complete Moment Convergence for Weighted Sums of Widely Orthant Dependent Random Variables
    Wu, Caoqing
    Ning, Mingming
    Shen, Aiting
    FILOMAT, 2018, 32 (15) : 5347 - 5359
  • [45] Complete convergence and complete moment convergence for widely orthant-dependent random variables
    Ding, Yang
    Wu, Yi
    Ma, Songlin
    Tao, Xinran
    Wang, Xuejun
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (16) : 8278 - 8294
  • [46] Complete Convergence for Moving Average Process of Martingale Differences
    Yang, Wenzhi
    Hu, Shuhe
    Wang, Xuejun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [47] On Complete Convergence of Moving Average Process for AANA Sequence
    Yang, Wenzhi
    Wang, Xuejun
    Ling, Nengxiang
    Hu, Shuhe
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [48] Complete convergence for moving average process generated by extended negatively dependent random variables under sub-linear expectations
    Ding, Xue
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (22) : 8166 - 8185
  • [49] Complete moment convergence of extended negatively dependent random variables
    Mingzhu Song
    Quanxin Zhu
    Journal of Inequalities and Applications, 2020
  • [50] Complete moment convergence of widely orthant dependent random variables
    Liu, Xi
    Shen, Yan
    Yang, Jie
    Lu, Yamei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (14) : 7256 - 7265