Some Implicit Summation Formulas and Symmetric Identities for the Generalized Hermite–Bernoulli Polynomials

被引:0
作者
M. A. Pathan
Waseem A. Khan
机构
[1] Centre for Mathematical and Statistical Sciences (CMSS),Department of Mathematics
[2] KFRI,undefined
[3] Integral University,undefined
来源
Mediterranean Journal of Mathematics | 2015年 / 12卷
关键词
33C45; 33C99; Hermite polynomials; Bernoulli polynomials; Hermite–Bernoulli polynomials; summation formulae; symmetric identities;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new class of generalized Hermite–Bernoulli polynomials and derive some implicit summation formulae and symmetric identities by applying the generating functions. These results extend some known summations and identities of generalized Hermite–Bernoulli polynomials studied by Dattoli et al., Natalini et al., Zhang et al., Yang and Pathan.
引用
收藏
页码:679 / 695
页数:16
相关论文
共 20 条
  • [1] Agarwal R.P(1953)A propos d’une note de M.Pierre Humbert C. R. Acad. Sci. Paris Ser. A-B 236 2031-2932
  • [2] Apostol T.M(1951)On the Lerch zeta funtions Pacific. J. Math. 1 161-167
  • [3] Bell E.T(1934)Exponential polynomials Ann. Math. 35 258-277
  • [4] Dattoli G.(1999)Finite sums and generalized forms of Bernoulli polynomials Rend. Math. 19 385-391
  • [5] Lorenzutta S.(1991)Stirling series and Bernoulli numbers Am. Math. Monthly 98 423-426
  • [6] Cesarano C.(1989)Solution to problem E3227 Am. Math. Monthly 96 364-416
  • [7] Deeba E(2008)Implicit summation formula for Hermite and related polynomials J. Math. Anal. Appl. 344 408-163
  • [8] Rodrigues D(2003)A generalization of the Bernoulli polynomials J. Appl. Math. 3 155-573
  • [9] Gessel J(2012)A new class of generalized Hermite–Bernoulli polynomials Georgian Math. J. 19 559-261
  • [10] Khan S.(2001)A symmetry power sum of polynomials and Bernoulli numbers Am. Math. Monthly 108 258-554