Another proof of the local curvature estimate for the Ricci flow

被引:0
作者
Shu-Yu Hsu
机构
[1] National Chung Cheng University,Department of Mathematics
来源
Geometriae Dedicata | 2019年 / 198卷
关键词
Ricci flow; Local boundedness; Riemmanian curvature; Ricci curvature; Primary 58J35; 35B45; Secondary 35K10;
D O I
暂无
中图分类号
学科分类号
摘要
By using the De Giorgi iteration method we will give a new simple proof of the recent result of Kotschwar et al. (J Funct Anal 271(9):2604–2630, 2016) and Sesum (Am J Math 127(6):1315–1324, 2005) on the local boundedness of the Riemannian curvature tensor of solutions of Ricci flow in terms of its inital value on a given ball and a local uniform bound on the Ricci curvature.
引用
收藏
页码:171 / 180
页数:9
相关论文
共 50 条
  • [31] Einstein metrics and preserved curvature conditions for the Ricci flow
    Brendle, Simon
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 81 - 85
  • [32] Uniqueness for Ricci flow with unbounded curvature in dimension 2
    Qing Chen
    Yajun Yan
    Annals of Global Analysis and Geometry, 2010, 38 : 293 - 303
  • [33] The Kähler–Ricci flow with positive bisectional curvature
    D.H. Phong
    Jian Song
    Jacob Sturm
    Ben Weinkove
    Inventiones mathematicae, 2008, 173 : 651 - 665
  • [35] Uniqueness for Ricci flow with unbounded curvature in dimension 2
    Chen, Qing
    Yan, Yajun
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (03) : 293 - 303
  • [36] Bakry-Emery curvature operator and Ricci flow
    Ruan, Qi-Hua
    POTENTIAL ANALYSIS, 2006, 25 (04) : 399 - 406
  • [37] Gauss maps of the Ricci-mean curvature flow
    Koike, Naoyuki
    Yamamoto, Hikaru
    GEOMETRIAE DEDICATA, 2018, 194 (01) : 169 - 185
  • [38] Gauss maps of the Ricci-mean curvature flow
    Naoyuki Koike
    Hikaru Yamamoto
    Geometriae Dedicata, 2018, 194 : 169 - 185
  • [39] Ricci flow and Perelman's proof of the Poincare conjecture
    Gadgil, Siddhartha
    Seshadri, Harish
    CURRENT SCIENCE, 2006, 91 (10): : 1326 - 1334
  • [40] Curvature Regularized Similarity Based Ricci Flow Embedding
    Behera, Adarsh Prasad
    Rani, Puja
    Verma, Shekhar
    Kumar, Manish
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (01): : 150 - 163