Sobolev Spaces on Non-Lipschitz Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with Application to Boundary Integral Equations on Fractal Screens

被引:0
作者
S. N. Chandler-Wilde
D. P. Hewett
A. Moiola
机构
[1] University of Reading,Department of Mathematics and Statistics
[2] University College London,Department of Mathematics
关键词
Sobolev spaces; Non-Lipschitz sets; Integral equations;
D O I
10.1007/s00020-017-2342-5
中图分类号
学科分类号
摘要
We study properties of the classical fractional Sobolev spaces on non-Lipschitz subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. We investigate the extent to which the properties of these spaces, and the relations between them, that hold in the well-studied case of a Lipschitz open set, generalise to non-Lipschitz cases. Our motivation is to develop the functional analytic framework in which to formulate and analyse integral equations on non-Lipschitz sets. In particular we consider an application to boundary integral equations for wave scattering by planar screens that are non-Lipschitz, including cases where the screen is fractal or has fractal boundary.
引用
收藏
页码:179 / 224
页数:45
相关论文
共 36 条