共 36 条
- [1] Dunkl–Hausdorff operators on BMOα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${BMO}_{\alpha} {(\mathbb{R})}$$\end{document} and Wαp,r(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W}_{\alpha}^{p,r}{(\mathbb{R})}$$\end{document} Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 (2): : 853 - 860
- [2] The Stationary Oseen Equations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{3}$$\end{document} . An Approach in Weighted Sobolev Spaces Journal of Mathematical Fluid Mechanics, 2007, 9 (2) : 211 - 225
- [3] Sensitivity of best recovery in the Sobolev spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$W_\infty ^{r,d} $$ \end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\widetilde W_\infty ^{r,d}$$ \end{document}for perturbed sampling Numerical Algorithms, 2000, 23 (2-3) : 251 - 261
- [4] Weighted Sobolev Spaces for a Scalar Model of the Stationary Oseen Equations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{3}$$\end{document} Journal of Mathematical Fluid Mechanics, 2007, 9 (2) : 181 - 210
- [5] Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2015, 66 (3) : 833 - 864
- [6] The behaviour of measures of noncompactness in L∞(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty ({\mathbb {R}}^n)$$\end{document} with application to the solvability of functional integral equations Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 (2): : 561 - 573
- [7] A note on weak convergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L^{1}_{\rm loc}({\mathbb{R}})$$ \end{document} Journal of Fixed Point Theory and Applications, 2007, 1 (2) : 337 - 350
- [8] Fredholm and regularity theory of Douglis–Nirenberg elliptic systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document} Mathematische Zeitschrift, 2012, 270 (1-2) : 369 - 393
- [9] Sobolev spaces and ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document}-differential operators on manifolds I: basic properties and weighted spaces Annals of Global Analysis and Geometry, 2022, 61 (4) : 721 - 758
- [10] Nonstationary Multiwavelets and Multiwavelet Packets in Sobolev Space Hs(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({\mathbb {R}}^d)$$\end{document} International Journal of Applied and Computational Mathematics, 2020, 6 (5)