Mechanism of intestinal transport of an organic cation, tributylmethylammonium in Caco-2 cell monolayers

被引:0
|
作者
Soon-Sun Hong
Sang-Cherl Moon
Chang-Koo Shim
机构
[1] Seoul National University,Research Institute of Pharmaceutical Science
[2] Seoul National University,Department of Pharmaceutics, College of Pharmacy
来源
关键词
Quaternary ammoniums; TBuMA; Caco-2; P-gp;
D O I
暂无
中图分类号
学科分类号
摘要
Many quaternary ammonium salts are incompletely absorbed after their oral administration and may also be actively secreted into the intestine. However, the underlying mechanism(s) that control the transport of these cations across the intestinal epithelium is not well understood. In this study, the mechanism of absorption of quaternary ammonium salts was investigated using Caco-2 cell monolayers, a human colon carcinoma cell line. Tributylmethyl-ammonium (TBuMA) was used as a model quaternary ammonium salts. When TBuMA was administrated at a dose of 13.3 imole/kg via iv and oral routes, the AUC values were 783.7±43.6 and 249.1±28.0 μmole·min/L for iv and oral administration, indicating a lower oral bioavailability of TBuMA (35.6%). The apparent permeability across Caco-2 monolayers from the basal to the apical side was 1.3 times (p<0.05) greater than that from the apical to the basal side, indicating a net secretion of TBuMA in the intestine. This secretion appeared to be responsible for the low oral bioavailability of the compound, probably mediated by p-gp (p-glycoprotein) located in the apical membrane. In addition, the uptake of TBuMA by the apical membrane showed a Na+ dependency. Thus, TBuMA appears to absorbed via a Na+ dependent carrier and is then secreted via p-gp related carriers.
引用
收藏
相关论文
共 50 条
  • [1] Mechanism of intestinal transport of an organic cation, tributylmethylammonium in Caco-2 cell monolayers
    Hong, SS
    Moon, SC
    Shim, CK
    ARCHIVES OF PHARMACAL RESEARCH, 2006, 29 (04) : 318 - 322
  • [2] Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers
    Kobayashi, Shoko
    Konishi, Yutaka
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (01) : 23 - 29
  • [3] Transepithelial transport of rosmarinic acid in intestinal Caco-2 cell monolayers
    Konishi, Y
    Kobayashi, S
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2005, 69 (03) : 583 - 591
  • [4] Transepithelial transport of artepillin C in intestinal Caco-2 cell monolayers
    Konishi, Y
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2005, 1713 (02): : 138 - 144
  • [5] MECHANISM OF INTESTINAL-ABSORPTION OF RANITIDINE AND ONDANSETRON - TRANSPORT ACROSS CACO-2 CELL MONOLAYERS
    GAN, LS
    HSYU, PH
    PRITCHARD, JF
    THAKKER, D
    PHARMACEUTICAL RESEARCH, 1993, 10 (12) : 1722 - 1725
  • [6] In vitro intestinal transport of phyllanthin across Caco-2 cell monolayers
    Nguyen, D. H.
    Sinchaipanid, N.
    Mitrevej, A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2013, 23 (03) : 207 - 214
  • [7] Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers
    Kobayashi, Shoko
    Tanabe, Soichi
    Sugiyama, Masanorl
    Konishi, Yutaka
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2008, 1778 (01): : 33 - 41
  • [8] Transport of thalidomide by the human intestinal Caco-2 monolayers
    Shufeng Zhou
    Yan Li
    Phillip Kestell
    Peter Schafer
    Eli Chan
    James W. Paxton
    European Journal of Drug Metabolism and Pharmacokinetics, 2005, 30 : 49 - 61
  • [9] Transport of thalidomide by the human intestinal Caco-2 monolayers
    Zhou, SF
    Li, Y
    Kestell, P
    Schafer, P
    Chan, E
    Paxton, JW
    EUROPEAN JOURNAL OF DRUG METABOLISM AND PHARMACOKINETICS, 2005, 30 (1-2) : 49 - 61
  • [10] Transepithelial transport mechanism of riboflavin across CACO-2 cell monolayers
    Huang, S
    Swaan, PW
    FASEB JOURNAL, 1999, 13 (04): : A73 - A73