Letf:M →\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\bar M$$
\end{document} be an isometric immersion between Riemannian manifolds. The purpose of this paper is to find the minimum possible conditions onM and\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\bar M$$
\end{document} (in the terms of curvatures and external diameter) in order to the image off be contained in a sphere. Our results generalize the other authors work in three major steps, domain, range and the codimension of immersions. As a byproduct, we obtain the non-embedding theorems Chern-Kuiper, Moore and Jacobowitz. The proofs are based on the maximum (comparison) principle.
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Xu, Hongwei
Lei, Li
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Lei, Li
Gu, Juanru
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Shanxi Univ, Key Lab Complex Syst & Data Sci, Minist Educ, Taiyuan, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Wang, Yu-Zhao
Wei, Pei-Can
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Wei, Pei-Can
Zhang, Huiting
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
机构:
Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Xu, Hongwei
Lei, Li
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Lei, Li
Gu, Juanru
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R ChinaZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Shanxi Univ, Key Lab Complex Syst & Data Sci, Minist Educ, Taiyuan, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Wang, Yu-Zhao
Wei, Pei-Can
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Wei, Pei-Can
Zhang, Huiting
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
机构:
Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China