On the Classification of Finite-Dimensional Linear Flows

被引:0
作者
Arno Berger
Anthony Wynne
机构
[1] University of Alberta,Mathematical and Statistical Sciences
来源
Journal of Dynamics and Differential Equations | 2020年 / 32卷
关键词
Linear flow; Flow equivalence; Orbit equivalence; (uniform) core; Kronecker flow; 34A30; 34C41; 37C15;
D O I
暂无
中图分类号
学科分类号
摘要
New elementary, self-contained proofs are presented for the topological and the smooth classification theorems of linear flows on finite-dimensional normed spaces. The arguments, and the examples that accompany them, highlight the fundamental roles of linearity and smoothness more clearly than does the existing literature.
引用
收藏
页码:23 / 59
页数:36
相关论文
共 39 条
[1]  
Aeppli A(1963)Integral equivalence of vector fields on manifolds and bifurcation of differential systems Am. J. Math. 85 633-654
[2]  
Markus L(2005)Dynamical characterization of the Lyapunov form of matrices Linear Algebra Appl. 402 272-290
[3]  
Ayala V(2007)On topological equivalence of linear flows with applications to bilinear control systems J. Dyn. Control Syst. 13 337-362
[4]  
Colonius F(2014)Topological conjugacy of real projective flows J. Lond. Math. Soc. (2) 90 49-66
[5]  
Kliemann W(1981)Nonlinear similarity Ann. Math. (2) 113 315-355
[6]  
Ayala V(1989)Nonlinear similarity begins in dimension six Am. J. Math. 111 717-752
[7]  
Colonius F(2011)Topological conjugacy for affine-linear flows and control systems Commun. Pure Appl. Anal. 10 847-857
[8]  
Kliemann W(1996)Topological classification of linear hyperbolic cocycles J. Dyn. Differ. Equ. 8 427-467
[9]  
Ayala V(1991)Linear and Lipschitz similarity Linear Algebra Appl. 151 17-25
[10]  
Kawan C(2017)Topological conjugacy of linear systems on Lie groups, Discrete Contin Dyn. Syst. 37 3411-3421