Applications of the Theory of Orlicz Spaces to Vector Measures

被引:0
|
作者
M. Nowak
机构
[1] University of Zielona Góra,Faculty of Mathematics, Computer Science and Econometrics
来源
Analysis Mathematica | 2019年 / 45卷
关键词
vector measure; mixed topolog; Mackey topology; Orlicz space; integration operator; 46G10; 28A25; 46A70; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Ω, Σ, λ) be a finite complete measure space, (E, ξ) be a sequentially complete locally convex Hausdorff space and E′ be its topological dual. Let caλ (Σ, E) stand for the space of all λ-absolutely continuous measures m: Σ → E. We show that a uniformly bounded subset M of caλ (Σ, E) is uniformly λ-absolutely continuous if and only if for every equicontinuous subset D of E′, there exists a submultiplicative Young function φ such that the set {d(e′om)dλ:m∈M,e′∈D}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\frac{{d\left( {e'om} \right)}}{{d\lambda }}:m \in M,e' \in D} \right\}$$\end{document} is relatively weakly compact in the Orlicz space Lφ(λ). As a consequence, we present a generalized Vitali–Hahn–Saks theorem on the setwise limit of a sequence of λ-absolutely continuous vector measures in terms of Orlicz spaces.
引用
收藏
页码:111 / 120
页数:9
相关论文
共 50 条
  • [31] Stability of vector measures and twisted sums of Banach spaces
    Kochanek, Tomasz
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (10) : 2416 - 2456
  • [32] Orlicz spaces which are AM-spaces
    C.E. Finol
    H. Hudzik
    L. Maligranda
    Archiv der Mathematik, 1997, 69 : 234 - 242
  • [33] Orlicz spaces which are AM-spaces
    Finol, CE
    Hudzik, H
    Maligranda, L
    ARCHIV DER MATHEMATIK, 1997, 69 (03) : 234 - 242
  • [35] PREDICTION OPERATOR IN ORLICZ SPACES
    WANG, TF
    JI, DH
    LI, YH
    CHINESE SCIENCE BULLETIN, 1995, 40 (19): : 1592 - 1595
  • [36] A NOTE ON THE CONVOLUTION IN ORLICZ SPACES
    Akbarbaglu, Ibrahim
    Maghsoudi, Saeid
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (03): : 645 - 653
  • [37] Prediction operator in Orlicz spaces
    王廷辅
    计东海
    李岩红
    ChineseScienceBulletin, 1995, (19) : 1592 - 1595
  • [38] Orlicz spaces which are noncreasy
    Y. Cui
    H. Hudzik
    Archiv der Mathematik, 2002, 78 : 303 - 309
  • [39] On approximation in Weighted Orlicz spaces
    Guven, Ali
    Israfilov, Daniyal M.
    MATHEMATICA SLOVACA, 2012, 62 (01) : 77 - 86
  • [40] Wavelet approximation in Orlicz spaces
    Krivoshein, A.
    Skopina, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)