Linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pairs of cyclic and quasi-cyclic codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}

被引:0
作者
Md Ajaharul Hossain
Ramakrishna Bandi
机构
[1] International Institute of Information Technology Naya Raipur,Department of Science and Applied Mathematics
关键词
LCP; Cyclic codes; l-intersection; EAQEC codes; 94B05; 94B15; 94B60;
D O I
10.1007/s12190-023-01861-z
中图分类号
学科分类号
摘要
Linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pairs of codes serve as a generalization of linear complementary pairs of codes and hulls. The ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} represents the dimension of the intersection of a given pair of codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. In this paper, we study the linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of cyclic codes and quasi-cyclic codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. For a given pair of cyclic codes, we derive the value of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} in terms of the degrees of the generator polynomials. A construction for an MDS ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection of a pair of cyclic codes is presented. Also, a condition for the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} intersection to be LCD is derived. In the latter part, we study the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of 1-generator quasi-cyclic codes of index 2. We present a construction for the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of 1-generator quasi-cyclic codes and prove a necessary and sufficient condition for the 1-generator quasi-cyclic code of index 2 to be self-dual. Our result shows that (Esmaeili and Yari in Finite Fields Appl 15(3):375–386, 2009, Theorem 7) is true only for trivial codes. In the end, a construction of 1-EAQEC MDS code is given as an application of our study.
引用
收藏
页码:2901 / 2917
页数:16
相关论文
共 50 条
  • [21] Martínez-Moro E(undefined)Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators undefined undefined undefined-undefined
  • [22] Sayıcı S(undefined)undefined undefined undefined undefined-undefined
  • [23] Hu P(undefined)undefined undefined undefined undefined-undefined
  • [24] Liu X(undefined)undefined undefined undefined undefined-undefined
  • [25] Guenda K(undefined)undefined undefined undefined undefined-undefined
  • [26] Gulliver TA(undefined)undefined undefined undefined undefined-undefined
  • [27] Jitman S(undefined)undefined undefined undefined undefined-undefined
  • [28] Thipworawimon S(undefined)undefined undefined undefined undefined-undefined
  • [29] Liu X(undefined)undefined undefined undefined undefined-undefined
  • [30] Liu H(undefined)undefined undefined undefined undefined-undefined