Linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pairs of cyclic and quasi-cyclic codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}

被引:0
作者
Md Ajaharul Hossain
Ramakrishna Bandi
机构
[1] International Institute of Information Technology Naya Raipur,Department of Science and Applied Mathematics
关键词
LCP; Cyclic codes; l-intersection; EAQEC codes; 94B05; 94B15; 94B60;
D O I
10.1007/s12190-023-01861-z
中图分类号
学科分类号
摘要
Linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pairs of codes serve as a generalization of linear complementary pairs of codes and hulls. The ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} represents the dimension of the intersection of a given pair of codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. In this paper, we study the linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of cyclic codes and quasi-cyclic codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. For a given pair of cyclic codes, we derive the value of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} in terms of the degrees of the generator polynomials. A construction for an MDS ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection of a pair of cyclic codes is presented. Also, a condition for the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} intersection to be LCD is derived. In the latter part, we study the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of 1-generator quasi-cyclic codes of index 2. We present a construction for the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of 1-generator quasi-cyclic codes and prove a necessary and sufficient condition for the 1-generator quasi-cyclic code of index 2 to be self-dual. Our result shows that (Esmaeili and Yari in Finite Fields Appl 15(3):375–386, 2009, Theorem 7) is true only for trivial codes. In the end, a construction of 1-EAQEC MDS code is given as an application of our study.
引用
收藏
页码:2901 / 2917
页数:16
相关论文
共 50 条
  • [11] Özkaya B(2022)-intersection pairs of codes and their applications Designs Codes Cryptography 91 1-4356
  • [12] Sole P(2017)LCP of group codes over finite Frobenius rings IEEE Trans. Inf. Theory 63 4344-393
  • [13] Bhowmick S(1994)LCD cyclic codes over finite fields Discrete Math. 126 391-1753
  • [14] Fotue-Tabue A(2004)The condition for a cyclic code to have a complementary dual IEEE Trans. Inf. Theory 50 1745-439
  • [15] Martínez-Moro E(2006)A class of 1-generator quasi-cyclic codes Science (New York, N.Y.) 314 436-136
  • [16] Bandi R(2008)Correcting quantum errors with entanglement Phys. Rev. A 77 121-3089
  • [17] Bagchi S(2018)Optimal entanglement formulas for entanglement-assisted quantum coding Des. Codes Crypt. 86 3073-639
  • [18] Liu X(2014)Constructions of good entanglement-assisted quantum error correcting codes IEEE Trans. Inf. Theory 60 622-undefined
  • [19] Liu H(2021)Catalytic quantum error correction Phys. Rev. A 103 undefined-undefined
  • [20] Güneri C(2017)Entanglement-assisted quantum communication beating the quantum singleton bound IEEE Trans. Inf. Theory 64 undefined-undefined