Linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pairs of cyclic and quasi-cyclic codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}

被引:0
作者
Md Ajaharul Hossain
Ramakrishna Bandi
机构
[1] International Institute of Information Technology Naya Raipur,Department of Science and Applied Mathematics
关键词
LCP; Cyclic codes; l-intersection; EAQEC codes; 94B05; 94B15; 94B60;
D O I
10.1007/s12190-023-01861-z
中图分类号
学科分类号
摘要
Linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pairs of codes serve as a generalization of linear complementary pairs of codes and hulls. The ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} represents the dimension of the intersection of a given pair of codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. In this paper, we study the linear ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of cyclic codes and quasi-cyclic codes over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. For a given pair of cyclic codes, we derive the value of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} in terms of the degrees of the generator polynomials. A construction for an MDS ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection of a pair of cyclic codes is presented. Also, a condition for the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} intersection to be LCD is derived. In the latter part, we study the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of 1-generator quasi-cyclic codes of index 2. We present a construction for the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-intersection pair of 1-generator quasi-cyclic codes and prove a necessary and sufficient condition for the 1-generator quasi-cyclic code of index 2 to be self-dual. Our result shows that (Esmaeili and Yari in Finite Fields Appl 15(3):375–386, 2009, Theorem 7) is true only for trivial codes. In the end, a construction of 1-EAQEC MDS code is given as an application of our study.
引用
收藏
页码:2901 / 2917
页数:16
相关论文
共 50 条
  • [1] Massey JL(1992)Linear codes with complementary duals Discrete Math. 106 337-342
  • [2] Yang X(1994)The condition for a cyclic code to have a complementary dual Discrete Math. 126 391-393
  • [3] Massey JL(2009)On complementary-dual quasi-cyclic codes Finite Fields Appl. 15 375-386
  • [4] Esmaeili M(2016)Complementary dual codes for counter-measures to side-channel attacks Adv. Math. Commun. 10 131-6589
  • [5] Yari S(2018)On linear complementary pairs of codes IEEE Trans. Inf. Theory 64 6583-840
  • [6] Carlet C(2020)Do non-free lcd codes over finite commutative Frobenius rings exist? Des. Codes Crypt. 88 825-746
  • [7] Guilley S(2020)-LCD codes over finite chain rings Des. Codes Crypt. 88 727-2405
  • [8] Carlet C(2020)Linear complementary pair of group codes over finite chain rings Des. Codes Crypt. 88 2397-2509
  • [9] Güneri C(2021)Linear complementary pairs of codes over rings Des. Codes Crypt. 89 2495-152
  • [10] Özbudak F(2020)Linear Des. Codes Crypt. 88 133-14