Recent methods of drought stress tolerance in plants

被引:0
作者
Farman Ali
Asghari Bano
Aliya Fazal
机构
[1] Quaid-e-Azam University,Department of Plant Sciences, Faculty of Biological Sciences
[2] University of Wah,Department of Biosciences
来源
Plant Growth Regulation | 2017年 / 82卷
关键词
Drought tolerance; Physiological stress in plants; Phytohormones;
D O I
暂无
中图分类号
学科分类号
摘要
In the climate change scenario the drought has been diagnosed as major stress affecting crop productivity. This review demonstrates some recent findings on the amelioration of drought stress. Nanoparticles, synthetic growth regulators viz. Trinexapac-ethyl, and Biochar addition helps to economize the water budget of plants, enhances the bioavailability of water and nutrients as well as overcomes drought induced osmotic and oxidative stresses. Besides ABA, SA and JA are also involved in inducing tolerance to drought stress through modulation of physiological and biochemical processes in plants. Plant growth promoting rhizobacteria (PGPR) offer new opportunities in agricultural biotechnology. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by improving root architechture, enhancing water use efficiency, producing exopolysaccharides, phytohormones viz, ABA, SA and IAA and volatile compounds. Further PGPR also play positive role in combating osmotic and oxidative stresses induced by drought stress through enhancing the accumulation of osmolytes, antioxidants and upregulation or down regulation of stress responsive genes. In transgenic plants stress inducible genes enhanced abiotic stress tolerance by encoding key enzymes regulating biosynthesis of compatible solutes. The role of genes/cDNAs encoding proteins involved in regulating other genes/proteins, signal transduction process and strategies to improve drought stress tolerance have also been discussed.
引用
收藏
页码:363 / 375
页数:12
相关论文
共 50 条
  • [31] Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants
    Wani, Shabir H.
    Kumar, Vinay
    Shriram, Varsha
    Sah, Saroj Kumar
    CROP JOURNAL, 2016, 4 (03): : 162 - 176
  • [32] Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants
    Zhang, Pengyu
    Yuan, Zhen
    Wei, Li
    Qiu, Xiao
    Wang, Guorui
    Liu, Zhixue
    Fu, Jiaxu
    Cao, Liru
    Wang, Tongchao
    PLANT SCIENCE, 2022, 314
  • [33] Enhancement of drought tolerance in Arabidopsis plants induced by sulfur dioxide
    Li, Lijuan
    Yi, Huilan
    ECOTOXICOLOGY, 2022, 31 (04) : 637 - 648
  • [34] Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants
    Imran, Muhammad
    Khan, Abdul Latif
    Shahzad, Raheem
    Khan, Muhammad Aaqil
    Bilal, Saqib
    Khan, Adil
    Kang, Sang-Mo
    Lee, In-Jung
    AOB PLANTS, 2021, 13 (04):
  • [35] Engineering drought tolerance in plants by modification of transcription and signalling factors
    Ahmed, Rida Fatima
    Irfan, Muhammad
    Shakir, Hafiz Abdullah
    Khan, Muhammad
    Chen, Lijing
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2020, 34 (01) : 781 - 789
  • [36] Enhancement of drought tolerance in Arabidopsis plants induced by sulfur dioxide
    Lijuan Li
    Huilan Yi
    Ecotoxicology, 2022, 31 : 637 - 648
  • [37] Response of Maize Hybrids in Drought-Stress Using Drought Tolerance Indices
    Khatibi, Ali
    Omrani, Saeed
    Omrani, Ali
    Shojaei, Seyed Habib
    Mousavi, Seyed Mohammad Nasir
    Illes, Arpad
    Bojtor, Csaba
    Nagy, Janos
    WATER, 2022, 14 (07)
  • [38] Identification of genes that contribute to drought stress tolerance in Populus
    Muhammad Arshad
    Kamal Biswas
    Jim Mattsson
    Sherryl Bisgrove
    Aine Plant
    BMC Proceedings, 5 (Suppl 7)
  • [39] Engineering for Drought Tolerance in Horticultural and Ornamental Plants: Lessons from the Studies with Model Plants
    Shen, Qingxi J.
    Wang, Jian
    JOURNAL OF CROP IMPROVEMENT, 2006, 17 (1-2) : 121 - 153
  • [40] Progress and perspective on drought and salt stress tolerance in cotton
    Abdelraheem, Abdelraheem
    Esmaeili, Nardana
    O'Connell, Mary
    Zhang, Jinfa
    INDUSTRIAL CROPS AND PRODUCTS, 2019, 130 : 118 - 129