共 50 条
- [41] Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings Fq[v1,v2,…,vt]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]$\end{document} Cryptography and Communications, 2023, 15 (3) : 529 - 551
- [42] Nonarithmetic affine invariant orbifolds in Hodd(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}^{{odd}}(2,2)$$\end{document} and H(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}(3,1)$$\end{document} Geometriae Dedicata, 2023, 217 (4)
- [43] Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-conjugate weight enumerators and invariant theory Archiv der Mathematik, 2023, 121 (5-6) : 691 - 705
- [44] α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}QBoost: an iteratively weighted adiabatic trained classifier Quantum Information Processing, 22 (12)
- [45] Representations of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-Algebras Associated with Noncommutative Polyvarieties Integral Equations and Operator Theory, 2021, 93 (1)
- [46] An improvement on parametric ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-support vector algorithm for classification Annals of Operations Research, 2019, 276 (1-2) : 155 - 168
- [47] Correcting mistakes in the paper “A mass formula for negacyclic codes of length 2k and some good negacyclic codes over ℤ4+uℤ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{4}+u\mathbb {Z}_{4}$\end{document}” [Cryptogr. Commun. (2017) 9: 241–272] Cryptography and Communications, 2020, 12 (6) : 1107 - 1110
- [48] Topological \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} -classification of finitely determined map germs Geometriae Dedicata, 2013, 166 (1) : 147 - 162
- [49] A classification of certain group-like FLe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_e$$\end{document}-chains Synthese, 2015, 192 (7) : 2095 - 2121
- [50] Efficient k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-NN classification based on homogeneous clusters Artificial Intelligence Review, 2014, 42 (3) : 491 - 513