A space exploration algorithm for multiparametric programming via Delaunay triangulation

被引:0
作者
Baris Burnak
Justin Katz
Efstratios N. Pistikopoulos
机构
[1] Texas A&M University,Artie McFerrin Department of Chemical Engineering
[2] Texas A&M University,Texas A&M Energy Institute
来源
Optimization and Engineering | 2021年 / 22卷
关键词
Multiparametric programming; Triangulation; Optimization under uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel parameter space exploration algorithm for three classes of multiparametric problems, namely linear (mpLP), quadratic (mpQP), and mixed-integer linear (mpMILP). We construct subsets of the parameter space in the form of simplices through Delaunay triangulation to facilitate identification of the optimal partitions that describe the solution space. The presented exploration strategy prioritizes identifying volumetrically larger critical regions compared to existing methods. We demonstrate the exploration algorithm on an illustrative example, and compare the volumetrically identified parameter space against existing solvers on randomly generated problems in all three classes.
引用
收藏
页码:555 / 579
页数:24
相关论文
共 94 条
[1]  
Ahmadi-Moshkenani P(2018)Combinatorial approach toward multiparametric quadratic programming based on characterizing adjacent critical regions IEEE Trans Autom Control 63 3221-3231
[2]  
Johansen TA(2018)An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks J Optim Theory Appl 178 502-537
[3]  
Olaru S(2009)A survey on explicit model predictive control Lect Notes Control Inf Sci 384 345-369
[4]  
Akbari A(2018)Multi-parametric global optimization approach for tri-level mixed-integer linear optimization problems J Glob Optim 47 1974-1985
[5]  
Barton PI(2002)Model predictive control based on linear programming—the explicit solution IEEE Trans Autom Control 38 3-20
[6]  
Alessio A(2002)The explicit linear quadratic regulator for constrained systems Automatica 118 515-540
[7]  
Bemporad A(2003)Geometric algorithm for multiparametric linear programming J Optim Theory Appl 57 3963-3976
[8]  
Avraamidou S(2018)Simultaneous process scheduling and control: a multiparametric programming-based approach Ind Eng Chem Res 125 164-184
[9]  
Pistikopoulos EN(2019)Integrated process design, scheduling, and control using multiparametric programming Comput Chem Eng 63 4827-4846
[10]  
Bemporad A(2018)Closed-loop integration of planning, scheduling and multi-parametric nonlinear control Comput Chem Eng 96 139-148