On Landau-Type Approximation Operators

被引:0
作者
Octavian Agratini
Sorin G. Gal
机构
[1] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[2] Tiberiu Popoviciu Institute of Numerical Analysis,Department of Mathematics and Computer Science
[3] University of Oradea,undefined
[4] Academy of Romanian Scientists,undefined
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Landau operator; modulus of continuity; weighted space; approximation process; upper estimates; quantitative Voronovskaya-type theorems; 41A36; 41A25; 41A17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define and study a general class of convolution operators based on Landau operators. A property of these new operators is that they reproduce the affine functions, a feature less commonly encountered by integral type operators. Approximation properties in different function spaces are obtained, including quantitative Voronovskaya-type results.
引用
收藏
相关论文
共 15 条
[1]  
Altomare F(2010)Korovkin-type theorems and approximation by positive linear operators Surv. Approx. Theory 5 92-164
[2]  
Chen Z(1998)A new class of generalized Landau linear positive operator sequence and its properties of approximation Chin. Q. J. Math. 13 29-43
[3]  
Shih T(1984)Approximation properties of a kind of generalized discrete Landau operator (Chinese) J. Huazhong Univ. Sci. Technol. 12 1-4
[4]  
Gao JB(1934)A proof of Weierstrass’ theorem Am. Math. Mon. 41 309-312
[5]  
Jackson D(1908)Über die Approximation einer stetingen Funktion durch eine ganze rationale Funktion Rend. Circ. Mat. Palermo 25 337-345
[6]  
Landau E(2004)Weighted simultaneous approximation with Baskakov type operators Acta Math. Hung. 104 143-151
[7]  
López-Moreno A-J(1961)Approximation of functions by generalized linear Landau operators (Russian) Dokl. Akad. Nauk SSSR 139 28-30
[8]  
Mamedov RG(1963)On the order and on the asymptotic value of the approximation of functions by generalized linear Landau operators (Russian) Akad. Nauk Azerbadzan SSR Trudy Inst. Mat. Meh. 2 49-65
[9]  
Mamedov RG(1968)The degree of convergence of linear positive operators Proc. Natl. Acad. Sci. U.S.A. 60 1196-1200
[10]  
Shisha O(1979)Approximation formulae of Voronovskaya type for certain convolution operators J. Approx. Theory 26 26-45