Analytical solution of non-linear fractional diffusion equation

被引:0
作者
Obaid Alqahtani
机构
[1] King Saud University,Department of Mathematics
来源
Advances in Difference Equations | / 2021卷
关键词
Fractional diffusion equation; Existence and Uniqueness; Homotopy Perturbation method; 26A33; 33E12; 35A22; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain an approximate/analytical solution of nonlinear fractional diffusion equation using the q-homotopy analysis transform method. The existence and uniqueness of the solution for this problem are also derived. Further, the applicability of the model is discussed based on graphical results and numerical examples.
引用
收藏
相关论文
共 65 条
  • [1] Chaurasia V.B.L.(2012)Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms Math. Eng. Sci. Aerosp. 3 1-10
  • [2] Dubey R.S.(2015)Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms Prog. Fract. Differ. Appl. 1 73-85
  • [3] Belgacem F.B.M.(2014)On a fractal LC-electric circuit modeled by local fractional calculus J. Fract. Calc. Appl. 5 52-58
  • [4] Caputo M.(2017)Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions Commun. Nonlinear Sci. Numer. Simul. 47 200-206
  • [5] Fabrizio M.(2014)Solution of fractional oxygen diffusion problem having without singular kernel Appl. Math. Comput. 243 161-175
  • [6] Dubey R.S.(2016)The solution of modified fractional Bergman’s minimal blood glucose-insulin model J. Nonlinear Sci. Appl. 11 1-9
  • [7] Goswami P.(2017)An approximate analytical (integral-balance) solution to a non-linear heat diffusion equation Entropy 19 723-733
  • [8] Belgacem F.B.M.(2015)Modelling fractal waves on shallow water surfaces via local fractional Korteweg–de Vries equation Therm. Sci. 19 757-762
  • [9] Yang X.J.(2014)Transient heat diffusion with a non-singular fading memory from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo–Fabrizio time-fractional derivative Abstr. Appl. Anal. 2014 133-149
  • [10] Machado J.A.T.(2016)Study of Bergman’s minimal blood glucose-insulin model by Adomian decomposition method Therm. Sci. 20 547-551