Radial ground state sign-changing solutions for a class of asymptotically cubic or super-cubic Schrödinger–Poisson type problems

被引:0
作者
Sitong Chen
Xianhua Tang
机构
[1] Central South University,School of Mathematics and Statistics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2019年 / 113卷
关键词
Schrödinger–Poisson system; Sign-changing solution; Ground state; Asymptotically cubic or super-cubic growth; 35J20; 35J25; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is dedicated to studying the following Schrödinger–Poisson system -▵u+V(|x|)u+λϕu=f(|x|,u),x∈R3,-▵ϕ=u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\triangle u+V(|x|)u+\lambda \phi u=f(|x|,u), &{}\quad x\in \mathbb {R}^3,\\ -\triangle \phi = u^2,&{}\quad x\in \mathbb {R}^3, \end{array} \right. \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a positive parameter, V∈C(R3,(0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in {\mathcal {C}}(\mathbb {R}^{3}, (0,\infty ))$$\end{document} and f∈C(R3×R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathcal {C}}({\mathbb {R}}^{3}\times \mathbb {R}, \mathbb {R})$$\end{document}. Using weaker conditions lim|t|→∞∫0tf(x,s)ds|t|3=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s){\mathrm {d}}s}{|t|^3}=\infty $$\end{document} uniformly in x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {R}^3$$\end{document}, and f(x,τ)τ3-f(x,tτ)(tτ)3sign(1-t)+θ0V(x)|1-t2|(tτ)2≥0,∀x∈R3,t>0,τ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left[ \frac{f(x,\tau )}{\tau ^3}-\frac{f(x,t\tau )}{(t\tau )^3}\right] {\mathrm {sign}}(1-t) +\theta _0V(x)\frac{|1-t^2|}{(t\tau )^2}\ge 0, \quad \forall \;\; x\in \mathbb {R}^3,\ t>0, \;\; \tau \ne 0 \end{aligned}$$\end{document}with a constant θ0∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _0\in (0,1)$$\end{document}, instead of the usual super-cubic condition lim|t|→∞∫0tf(x,s)ds|t|4=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s){\mathrm {d}}s}{|t|^4}=\infty $$\end{document} uniformly in x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {R}^3$$\end{document}, and the Nehari type monotonic condition on f(x,t)/|t|3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x,t)/|t|^3$$\end{document}, we establish the existence of one radial ground state sign-changing solution uλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\lambda $$\end{document} with precisely two nodal domains. Under the same conditions, we also prove that the energy of any radial sign-changing solution is strictly larger than two times the least energy; and give a convergence property of uλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_\lambda $$\end{document} as λ↘0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \searrow 0$$\end{document}. Our result unifies both asymptotically cubic and super-cubic cases, which extends the existing ones in the literature.
引用
收藏
页码:627 / 643
页数:16
相关论文
共 80 条
[1]  
Ambrosetti A(2008)Multiple bound states for the Schrödinger–Poisson problem Commun. Contemp. Math. 10 391-404
[2]  
Ruiz D(2011)Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition J. Math. Anal. Appl. 377 584-592
[3]  
Alves CO(2017)A sign-changing solution for the Schrödinger–Poisson equation Rocky Mt. J. Math. 47 1-25
[4]  
Souto MAS(2008)Ground state solutions for the nonlinear Schrödinger–Maxwell equations J. Math. Anal. Appl. 345 90-108
[5]  
Soares SHM(1998)An eigenvalue problem for the Schrödinger–Maxwell equations Topol. Methods Nonlinear Anal. 11 283-293
[6]  
Alves CO(2002)Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations Rev. Math. Phys. 14 409-420
[7]  
Souto MAS(2004)Sign changing solutions of superlinear Schrödinger equations Commun. Partial Differ. Equ. 29 25-42
[8]  
Soares SM(2005)Three nodal solutions of singularly perturbed elliptic equations on domains without topology Ann. Inst. H. Poincaré Anal. Non Linéaire 22 259-281
[9]  
Azzollini A(1978)Un criterio di esistenza per i punti critici su varietà illimitate Rend. Acad. Sci. Lett. Inst. Lombardo 112 332-336
[10]  
Pomponio A(2010)Positive solutions for some non-autonomous Schrödinger–Poisson systems J. Differ. Equ. 248 521-543