Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics

被引:0
|
作者
Pierre Degond
Amic Frouvelle
Jian-Guo Liu
机构
[1] Université de Toulouse,UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse
[2] Institut de Mathématiques de Toulouse UMR 5219,CNRS
[3] Université Paris-Dauphine,CEREMADE, UMR CNRS 7534
[4] Duke University,Department of Physics
[5] Duke University,Department of Mathematics
来源
Archive for Rational Mechanics and Analysis | 2015年 / 216卷
关键词
Phase Transition; Critical Exponent; Noise Intensity; Order Phase Transition; Macroscopic Model;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
引用
收藏
页码:63 / 115
页数:52
相关论文
共 50 条
  • [21] Melting phenomena of self-organized magnetic structures investigated by variational autoencoder
    Yoona, H. G.
    Leea, D. B.
    Parka, S. M.
    Choib, J. W.
    Kwon, H. Y.
    Won, C.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 305
  • [22] Self-organized charge puddles in a three-dimensional topological material
    Borgwardt, N.
    Lux, J.
    Vergara, I.
    Wang, Zhiwei
    Taskin, A. A.
    Segawa, Kouji
    van Loosdrecht, P. H. M.
    Ando, Yoichi
    Rosch, A.
    Grueninger, M.
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [23] Self-Organized Criticality Analysis of Earthquake Model Based on Heterogeneous Networks
    王林
    张贵清
    陈天仑
    CommunicationsinTheoreticalPhysics, 2011, 55 (01) : 89 - 94
  • [24] Self-organized flocking with a mobile robot swarm: a novel motion control method
    Ferrante, Eliseo
    Turgut, Ali Emre
    Huepe, Cristian
    Stranieri, Alessandro
    Pinciroli, Carlo
    Dorigo, Marco
    ADAPTIVE BEHAVIOR, 2012, 20 (06) : 460 - 477
  • [25] LOCAL SENSITIVITY ANALYSIS FOR THE VICSEK-TYPE SELF-ORGANIZED HYDRODYNAMIC MODEL
    Jiang, N. I. N. G.
    Zhang, Z. E. N. G.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (03) : 591 - 625
  • [26] Self-organized limit cycles in red-detuned atom-cavity systems
    Gao, Pan
    Zhou, Zheng-Wei
    Guo, Guang-Can
    Luo, Xi -Wang
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [27] Identification of Self-Organized Critical State on Twitter Based on the Retweets' Time Series Analysis
    Dmitriev, Andrey
    Dmitriev, Victor
    COMPLEXITY, 2021, 2021
  • [28] Decoherence and Phase Transitions in Quantum Dynamics
    Gaveau, B.
    Schulman, L. S.
    JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (04) : 800 - 807
  • [29] Decoherence and Phase Transitions in Quantum Dynamics
    B. Gaveau
    L. S. Schulman
    Journal of Statistical Physics, 2019, 174 : 800 - 807
  • [30] Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions
    Vainchtein, A
    Rosakis, P
    JOURNAL OF NONLINEAR SCIENCE, 1999, 9 (06) : 697 - 719