The Radius of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Convexity of Normalized Bessel Functions of the First Kind

被引:0
作者
Árpád Baricz
Halit Orhan
Róbert Szász
机构
[1] Babeş-Bolyai University,Department of Economics
[2] Óbuda University,Institute of Applied Mathematics
[3] Faculty of Science,Department of Mathematics
[4] Atatürk University,Department of Mathematics and Informatics
[5] Sapientia Hungarian University of Transylvania,undefined
关键词
Bessel functions; Convex, starlike and ; -convex functions; Zeros of Bessel functions; 33C10; 30C45;
D O I
10.1007/s40315-015-0123-1
中图分类号
学科分类号
摘要
The radii of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-convexity are deduced for three different kinds of normalized Bessel functions of the first kind and it is shown that these radii are between the radii of starlikeness and convexity, when α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,1]$$\end{document}, and they are decreasing with respect to the parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. The results presented in this paper unify some recent results on the radii of starlikeness and convexity for normalized Bessel functions of the first kind. The key tools in the proofs are some interlacing properties of the zeros of some Dini functions and the zeros of Bessel functions of the first kind.
引用
收藏
页码:93 / 103
页数:10
相关论文
共 19 条
  • [1] Baricz Á(2006)Geometric properties of generalized Bessel functions of complex order Mathematica 48 13-18
  • [2] Baricz Á(2008)Geometric properties of generalized Bessel functions Publ. Math. Debrecen 73 155-178
  • [3] Baricz Á(2014)The radius of starlikeness of normalized Bessel functions of the first kind Proc. Am. Math. Soc. 142 2019-2025
  • [4] Kupán PA(2010)Starlikeness and convexity of generalized Bessel functions Integr. Transforms Spec. Funct. 21 641-653
  • [5] Szász R(2014)The radius of convexity of normalized Bessel functions of the first kind Anal. Appl. 12 485-509
  • [6] Baricz Á(1960)Univalence of Bessel functions Proc. Am. Math. Soc. 11 278-283
  • [7] Ponnusamy S(1962)Univalent solutions of Canad. J. Math. 14 69-78
  • [8] Baricz Á(1982)Univalence of normalized solutions of Int. J. Math. Math. Sci. 5 459-483
  • [9] Szász R(1960)The radius of univalence of Bessel functions Ill. J. Math. 4 143-149
  • [10] Brown RK(1969)Une propriété de convexité généralisée dans la théorie de la représentation conforme Mathematica 11 127-133