Optimal Stop-Loss Reinsurance Under the VaR and CTE Risk Measures: Variable Transformation Method

被引:0
作者
Junhong Du
Zhiming Li
Lijun Wu
机构
[1] Xinjiang University,College of Mathematics and System Science
来源
Computational Economics | 2019年 / 53卷
关键词
Stop-loss reinsurance; Expected value principle; Value at risk (VaR); Conditional tail expectation (CTE); Variable transformation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a variable transformation way and obtain the optimal stop-loss reinsurance under value at risk (VaR) and conditional tail expectation (CTE) criteria, respectively. Let X be the initial loss of an insurer with cumulative distribution function FX(x)=P(X≤x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_X(x)=P(X\le x)$$\end{document} and survival function SX(x)=1-FX(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_X(x)=1-F_X(x)$$\end{document}. Denote a transformation variable Y=-ln(SX(X))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y=-\,\ln (S_X(X))$$\end{document}. Firstly, we analyze properties of the variables X and Y. Then, under VaR- and CTE-optimization criteria, we provide the necessary and sufficient conditions for the optimal retention existence of Y, respectively. Further, the optimal retention of X is obtained. Some examples are given to illustrate these results.
引用
收藏
页码:1133 / 1151
页数:18
相关论文
共 43 条
[1]  
Arrow KJ(1963)Uncertainty and the welfare economics of medical care American Economic Review 53 941-973
[2]  
Artzner P(1997)Thinking coherently Risk 10 68-71
[3]  
Delbean F(1999)Coherent measures of risks Mathematical Finance 9 203-208
[4]  
Eber JM(2011)Asymptotics for risk capital allocations based on conditional tail expectation Insurance: Mathematics and Economics 49 310-324
[5]  
Health D(2001)Value-at-risk-based risk management: Optimal policies and asset prices The Review of Financial Studies Summer 14 371-405
[6]  
Artzner P(2007)Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures Astin Bulletin 37 93-112
[7]  
Delbean F(2008)Optimal reinsurance under VaR and CTE risk measures Insurance: Mathematics and Economics 43 185-196
[8]  
Eber JM(2014)Optimal reinsurance with regulatory initial capital and default risk Insurance Mathematics annd Economics 57 13-24
[9]  
Health D(2013)Optimal reinsurance with general premium principles Insurance: Mathematics and Economics 52 180-189
[10]  
Asimit AV(2013)Optimal reinsurance subject to Vajda condition Insurance: Mathematics and Economics 53 179-189