Well-posedness and longtime dynamics for the finitely degenerate parabolic and pseudo-parabolic equations

被引:0
作者
Gongwei Liu
Shuying Tian
机构
[1] Henan University of Technology,School of Science
[2] Wuhan University of Technology,School of Science
来源
Journal of Evolution Equations | 2024年 / 24卷
关键词
Finitely degenerate parabolic and pseudo-parabolic equations; Well-posedness; Global attractor; Upper semicontinuity; 35K65; 35B41; 35K20; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the initial-boundary value problem for degenerate parabolic and pseudo-parabolic equations associated with Hörmander-type operator. Under the subcritical growth restrictions on the nonlinearity f(u), which are determined by the generalized Métivier index, we establish the global existence of solutions and the corresponding attractors. Finally, we show the upper semicontinuity of the attractors in the topology of HX,01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,0}^1(\Omega )$$\end{document}.
引用
收藏
相关论文
共 50 条
[41]   Well-posedness of difference scheme for elliptic-parabolic equations in Holder spaces without a weight [J].
Ashyralyev, Allaberen ;
Gercek, Okan ;
Zusi, Emel .
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 :84-88
[42]   Well-Posedness of Fractional Degenerate Differential Equations in Banach Spaces [J].
Shangquan Bu ;
Gang Cai .
Fractional Calculus and Applied Analysis, 2019, 22 :379-395
[43]   Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations [J].
Nguyen Duc Phuong ;
Nguyen Anh Tuan ;
Kumar, Devendra ;
Nguyen Huy Tuan .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
[44]   WELL-POSEDNESS OF FRACTIONAL DEGENERATE DIFFERENTIAL EQUATIONS IN BANACH SPACES [J].
Bu, Shangquan ;
Cai, Gang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) :379-395
[45]   On a class of nonlinear time-fractional pseudo-parabolic equations with bounded delay [J].
Wang, Sen ;
Pang, Denghao ;
Zhou, Xianfeng ;
Jiang, Wei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) :10047-10073
[46]   Global Boundary Feedback Stabilization for a Class of Pseudo-Parabolic Partial Differential Equations [J].
Hasan, Agus ;
Aamo, Ole Morten ;
Foss, Bjarne .
2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, :5607-5612
[47]   WELL-POSEDNESS OF DEGENERATE INTEGRO-DIFFERENTIAL EQUATIONS IN FUNCTION SPACES [J].
Aparicio, Rafael ;
Keyantuo, Valentin .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
[48]   Well-posedness of degenerate differential equations in Holder continuous function spaces [J].
Bu, Shangquan .
FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) :239-248
[49]   Global well-posedness theory for a class of coupled parabolic-elliptic systems [J].
Malysheva, Tetyana ;
White, Luther W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
[50]   Parabolic Kirchhoff equations with non-homogeneous flux boundary conditions: well-posedness, regularity and asymptotic behavior [J].
Mamani Luna, Tito L. ;
Madeira, Gustavo Ferron .
NONLINEARITY, 2021, 34 (08) :5844-5871