Well-posedness and longtime dynamics for the finitely degenerate parabolic and pseudo-parabolic equations

被引:0
作者
Gongwei Liu
Shuying Tian
机构
[1] Henan University of Technology,School of Science
[2] Wuhan University of Technology,School of Science
来源
Journal of Evolution Equations | 2024年 / 24卷
关键词
Finitely degenerate parabolic and pseudo-parabolic equations; Well-posedness; Global attractor; Upper semicontinuity; 35K65; 35B41; 35K20; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the initial-boundary value problem for degenerate parabolic and pseudo-parabolic equations associated with Hörmander-type operator. Under the subcritical growth restrictions on the nonlinearity f(u), which are determined by the generalized Métivier index, we establish the global existence of solutions and the corresponding attractors. Finally, we show the upper semicontinuity of the attractors in the topology of HX,01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,0}^1(\Omega )$$\end{document}.
引用
收藏
相关论文
共 50 条
[31]   Composition estimates and well-posedness for Hardy-Henon parabolic equations in Besov spaces [J].
Chikami, Noboru .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2019, 5 (02) :215-250
[32]   Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space [J].
Fabio Punzo .
Nonlinear Differential Equations and Applications NoDEA, 2012, 19 :485-501
[33]   On time fractional pseudo-parabolic equations with nonlocal integral conditions [J].
Nguyen Huu Can ;
Kumar, Devendra ;
Tri Vo Viet ;
Anh Tuan Nguyen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) :7779-7797
[34]   ON TIME FRACTIONAL PSEUDO-PARABOLIC EQUATIONS WITH NONLOCAL INTEGRAL CONDITIONS [J].
Nguyen Anh Tuan ;
O'Regan, Donal ;
Baleanu, Dumitru ;
Tuan, Nguyen H. .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01) :225-238
[35]   SEMILINEAR CAPUTO TIME-FRACTIONAL PSEUDO-PARABOLIC EQUATIONS [J].
Nguyen Huy Tuan ;
Vo Van Au ;
Xu, Runzhang .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) :583-621
[36]   Well-Posedness of Multipoint Elliptic-Parabolic Differential Problems [J].
Ashyralyev, Allaberen ;
Gercek, Okan .
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 :123-137
[38]   Well-posedness, global existence and large time behavior for Hardy-Henon parabolic equations [J].
Ben Slimene, Byrame ;
Tayachi, Slim ;
Weissler, Fred B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 152 :116-148
[39]   Nonlocal boundary-value problems for abstract parabolic equations: well-posedness in Bochner spaces [J].
Allaberen Ashyralyev .
Journal of Evolution Equations, 2006, 6 :1-28
[40]   On the well-posedness of a second order difference scheme for elliptic-parabolic equations in Holder spaces [J].
Gercek, Okan ;
Zusi, Emel .
ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676