Well-posedness and longtime dynamics for the finitely degenerate parabolic and pseudo-parabolic equations

被引:0
|
作者
Gongwei Liu
Shuying Tian
机构
[1] Henan University of Technology,School of Science
[2] Wuhan University of Technology,School of Science
来源
Journal of Evolution Equations | 2024年 / 24卷
关键词
Finitely degenerate parabolic and pseudo-parabolic equations; Well-posedness; Global attractor; Upper semicontinuity; 35K65; 35B41; 35K20; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the initial-boundary value problem for degenerate parabolic and pseudo-parabolic equations associated with Hörmander-type operator. Under the subcritical growth restrictions on the nonlinearity f(u), which are determined by the generalized Métivier index, we establish the global existence of solutions and the corresponding attractors. Finally, we show the upper semicontinuity of the attractors in the topology of HX,01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,0}^1(\Omega )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness and longtime dynamics for the finitely degenerate parabolic and pseudo-parabolic equations
    Liu, Gongwei
    Tian, Shuying
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (01)
  • [2] On the well-posedness of a nonlinear pseudo-parabolic equation
    Nguyen Huy Tuan
    Vo Van Au
    Vo Viet Tri
    Donal O’Regan
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [3] On the well-posedness of a nonlinear pseudo-parabolic equation
    Tuan, Nguyen Huy
    Au, Vo Van
    Tri, Vo Viet
    O'Regan, Donal
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [4] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wang, Wei-ke
    Wang, Yu-tong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (02): : 386 - 400
  • [5] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wei-ke Wang
    Yu-tong Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 386 - 400
  • [6] The Well-Posedness of Solution to Semilinear Pseudo-parabolic Equation
    Wei-ke WANG
    Yu-tong WANG
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 386 - 400
  • [7] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Shaoyong Lai
    Haibo Yan
    Yang Wang
    Boundary Value Problems, 2014
  • [8] Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation
    Cheng, Jiazhuo
    Fang, Shaomei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [9] Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation
    Jiazhuo Cheng
    Shaomei Fang
    Boundary Value Problems, 2020
  • [10] The local well-posedness of solutions for a nonlinear pseudo-parabolic equation
    Lai, Shaoyong
    Yan, Haibo
    Wang, Yang
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 8