The number of isomorphism classes of finite groups with given element orders

被引:4
作者
Deng H. [1 ]
Lucido M.S. [2 ]
Shi W. [3 ]
机构
[1] Department of Computer Science, Southwest Normal University, Chongqing
[2] Dipartimento di Matematica e Informatica, Universita di Udine, I-33100, Udine
[3] Institute of Mathematics, Southwest Normal University, Chongqing
基金
美国国家科学基金会;
关键词
Finite group; Prime graph; Set of element orders of a group;
D O I
10.1023/A:1014658001689
中图分类号
学科分类号
摘要
Let G be a finite group and πe(G) the set of element orders of G. Denote by h(πe(G)) the number of isomorphism classes of finite groups H satisfying πe(H) = πe(G). We prove that if G has at least three prime graph components, then h(πe(G)) ∈ (1, ∞). © 2002 Plenum Publishing Corporation.
引用
收藏
页码:39 / 46
页数:7
相关论文
共 32 条
[1]  
The Kourovka Notebook, 13th Edn., (1995)
[2]  
Williams J.S., Prime graph components of finite groups, J. Alg., 69, 2, pp. 487-513, (1981)
[3]  
Chigira N., Shi W., More on the set of element orders of finite groups, Northeast Math. J., 12, 3, pp. 257-260, (1996)
[4]  
Mazurov V.D., The set of orders of elements in a finite group, Algebra Logika, 33, 1, pp. 81-89, (1994)
[5]  
Mazurov V.D., A characterization of finite nonsimple groups by the set of orders of their elements, Algebra Logika, 36, 3, pp. 304-322, (1997)
[6]  
Shi W., Tang C.Y., A characterization of some orthogonal groups, Prog. Nat. Sc, 7, 2, pp. 155-162, (1997)
[7]  
Shi W., Groups whose elements have given orders, Chin. Sc. Bull., 42, 21, pp. 1761-1764, (1997)
[8]  
Conway J.H., Curtis R.T., Norton S.P., Et al., Atlas of Finite Groups, (1985)
[9]  
Deriziotis D.I., The centralizers of semisimple elements of the Chevalley groups E <sub>7</sub> and E<sub>8</sub>, Tokyo J. Math., 6, 1, pp. 191-216, (1983)
[10]  
Deriziotis D.I., Fakiolas A.P., The maximal tori in the finite Chevalley groups of type E<sub>6</sub>, E<sub>7</sub>, and E<sub>8</sub>, Comm. Alg., 19, 3, pp. 889-903, (1991)