Pre-trained language model-enhanced conditional generative adversarial networks for intrusion detection

被引:0
作者
Fang Li
Hang Shen
Jieai Mai
Tianjing Wang
Yuanfei Dai
Xiaodong Miao
机构
[1] Nanjing Tech University,College of Computer and Information Engineering (College of Artificial Intelligence)
[2] Nanjing Tech University,School of Mechanical and Power Engineering
来源
Peer-to-Peer Networking and Applications | 2024年 / 17卷
关键词
Intrusion detection; Multi-class classification; Bidirectional encoder representations from transformers (BERT); Conditional generative adversarial network (CGAN);
D O I
暂无
中图分类号
学科分类号
摘要
As cyber threats continue to evolve, ensuring network security has become increasingly critical. Deep learning-based intrusion detection systems (IDS) are crucial for addressing this issue. However, imbalanced training data and limited feature extraction weaken classification performance for intrusion detection. This paper presents a conditional generative adversarial network (CGAN) enhanced by Bidirectional Encoder Representations from Transformers (BERT), a pre-trained language model, for multi-class intrusion detection. This approach augments minority attack data through CGAN to mitigate class imbalance. BERT with robust feature extraction is embedded into the CGAN discriminator to enhance input–output dependency and improve detection through adversarial training. Experiments show the proposed model outperforms baselines on CSE-CIC-IDS2018, NF-ToN-IoT-V2, and NF-UNSW-NB15-v2 datasets, achieving F1-scores of 98.230%, 98.799%, and 89.007%, respectively, and improving F1-scores over baselines by 1.218%-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}13.844% 0.215%-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}13.779%, and 2.056%-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}22.587%.
引用
收藏
页码:227 / 245
页数:18
相关论文
共 57 条
[1]  
Chou D(2021)A Survey on Data-driven Network Intrusion Detection ACM Comput Surv (CSUR) 54 1-36
[2]  
Jiang M(2021)Machine learning methods for cyber security intrusion detection: Datasets and comparative study Comput Netw 188 130-139
[3]  
Kilincer IF(2020)Deep learning methods in network intrusion detection: A survey and an objective comparison J Netw Comput Appl 169 13492-13500
[4]  
Ertam F(2017)An effective intrusion detection framework based on SVM with feature augmentation Knowl-Based Syst 136 321-357
[5]  
Sengur A(2012)A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier Expert Syst Appl 39 131-140
[6]  
Gamage S(2002)SMOTE: Synthetic Minority Over-sampling Technique J Artif Intell Res 16 1-20
[7]  
Samarabandu J(2021)Network intrusion detection based on IE-DBN model Comput Commun 178 1-27
[8]  
Wang H(2022)Huang X (2022) Intrusion detection system combined enhanced random forest with smote algorithm EURASIP J Adv Signal Process 1 121-128
[9]  
Gu J(2019)A semi-boosted nested model with sensitivity-based weighted binarization for multi-domain network intrusion detection ACM Trans Intell Syst Technol (TIST) 10 240-254
[10]  
Wang S(2021)GAN-based imbalanced data intrusion detection system Pers Ubiquit Comput 25 120-132