On Serre’s uniformity conjecture for semistable elliptic curves over totally real fields

被引:0
作者
Samuele Anni
Samir Siksek
机构
[1] University of Warwick,Mathematics Institute
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Elliptic curves; Serre’s uniformity; Modularity; Galois representation; Level lowering; Hilbert modular forms; Primary 11F80; Secondary 11G05; 11F41;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} be a totally real field, and let S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} be a finite set of non-archimedean places of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. It follows from the work of Merel, Momose and David that there is a constant BK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{K,S}$$\end{document} so that if E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is an elliptic curve defined over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, semistable outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, then for all p>BK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>B_{K,S}$$\end{document}, the representation ρ¯E,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p}$$\end{document} is irreducible. We combine this with modularity and level lowering to show the existence of an effectively computable constant CK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{K,S}$$\end{document}, and an effectively computable set of elliptic curves over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with CM E1,⋯,En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1,\cdots ,E_n$$\end{document} such that the following holds. If E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is an elliptic curve over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} semistable outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, and p>CK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>C_{K,S}$$\end{document} is prime, then either ρ¯E,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p}$$\end{document} is surjective, or ρ¯E,p∼ρ¯Ei,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p} \sim \overline{\rho }_{E_i,p}$$\end{document} for some i=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\dots ,n$$\end{document}.
引用
收藏
页码:193 / 199
页数:6
相关论文
共 50 条
[41]   ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER QUARTIC FIELDS [J].
Gonzalez-Jimenez, Enrique ;
Lozano-Robledo, Alvaro .
MATHEMATICS OF COMPUTATION, 2018, 87 (311) :1457-1478
[42]   Torsion groups of elliptic curves over quadratic fields [J].
Kamienny, Sheldon ;
Najman, Filip .
ACTA ARITHMETICA, 2012, 152 (03) :291-305
[43]   Computing the rank of elliptic curves over real quadratic number fields of class number 1 [J].
Cremona, JE ;
Serf, P .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1187-1200
[44]   Quadratic Chabauty for (bi)elliptic curves and Kim's conjecture [J].
Bianchi, Francesca .
ALGEBRA & NUMBER THEORY, 2020, 14 (09) :2369-2416
[45]   GENERALIZED ARTIN CONJECTURE FOR PRIMITIVE ROOTS AND CYCLICITY MOD P OF ELLIPTIC-CURVES OVER FUNCTION-FIELDS [J].
CLARK, DA ;
KUWATA, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (02) :167-173
[46]   A lower bound on the proportion of modular elliptic curves over Galois CM fields [J].
Feng, Zachary .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (02) :481-486
[47]   Fermat's last theorem over some small real quadratic fields [J].
Freitas, Nuno ;
Siksek, Samir .
ALGEBRA & NUMBER THEORY, 2015, 9 (04) :875-895
[48]   Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields [J].
Ghitza, Alexandru ;
Yamauchi, Takuya .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2024, 36 (02) :637-660
[49]   Torsion of rational elliptic curves over quadratic fields II [J].
Enrique González-Jiménez ;
José M. Tornero .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 :121-143
[50]   Open image computations for elliptic curves over number fields [J].
Zywina, David .
RESEARCH IN NUMBER THEORY, 2025, 11 (01)