On Serre’s uniformity conjecture for semistable elliptic curves over totally real fields

被引:0
作者
Samuele Anni
Samir Siksek
机构
[1] University of Warwick,Mathematics Institute
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Elliptic curves; Serre’s uniformity; Modularity; Galois representation; Level lowering; Hilbert modular forms; Primary 11F80; Secondary 11G05; 11F41;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} be a totally real field, and let S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} be a finite set of non-archimedean places of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. It follows from the work of Merel, Momose and David that there is a constant BK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{K,S}$$\end{document} so that if E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is an elliptic curve defined over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, semistable outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, then for all p>BK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>B_{K,S}$$\end{document}, the representation ρ¯E,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p}$$\end{document} is irreducible. We combine this with modularity and level lowering to show the existence of an effectively computable constant CK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{K,S}$$\end{document}, and an effectively computable set of elliptic curves over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with CM E1,⋯,En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1,\cdots ,E_n$$\end{document} such that the following holds. If E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is an elliptic curve over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} semistable outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, and p>CK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>C_{K,S}$$\end{document} is prime, then either ρ¯E,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p}$$\end{document} is surjective, or ρ¯E,p∼ρ¯Ei,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p} \sim \overline{\rho }_{E_i,p}$$\end{document} for some i=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\dots ,n$$\end{document}.
引用
收藏
页码:193 / 199
页数:6
相关论文
共 50 条
[31]   TORSION OF ELLIPTIC CURVES OVER CYCLIC CUBIC FIELDS [J].
Derickx, Maarten ;
Najman, Filip .
MATHEMATICS OF COMPUTATION, 2019, 88 (319) :2443-2459
[32]   The Manin constant of elliptic curves over function fields [J].
Pal, Ambrus .
ALGEBRA & NUMBER THEORY, 2010, 4 (05) :509-545
[33]   Torsion of rational elliptic curves over quadratic fields [J].
Gonzalez-Jimenez, Enrique ;
Tornero, Jose M. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) :923-934
[34]   Modularity of CM elliptic curves over division fields [J].
Murabayashi, Naoki .
JOURNAL OF NUMBER THEORY, 2008, 128 (04) :895-897
[35]   Division polynomials of elliptic curves over finite fields [J].
Cheon, J ;
Hahn, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (10) :226-227
[36]   Lattices from elliptic curves over finite fields [J].
Fukshansky, Lenny ;
Maharaj, Hiren .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 :67-78
[37]   CONTROL THEOREMS FOR ELLIPTIC CURVES OVER FUNCTION FIELDS [J].
Bandini, A. ;
Longhi, I. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (02) :229-256
[38]   Group structure of elliptic curves over finite fields [J].
Wittmann, C .
JOURNAL OF NUMBER THEORY, 2001, 88 (02) :335-344
[39]   On the torsion of optimal elliptic curves over function fields [J].
Papikian, M .
MATHEMATICAL RESEARCH LETTERS, 2006, 13 (2-3) :321-331
[40]   ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER SEXTIC FIELDS [J].
Daniels, Harris B. ;
Gonzalez-Jimenez, Enrique .
MATHEMATICS OF COMPUTATION, 2020, 89 (321) :411-435