On Serre’s uniformity conjecture for semistable elliptic curves over totally real fields

被引:0
作者
Samuele Anni
Samir Siksek
机构
[1] University of Warwick,Mathematics Institute
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Elliptic curves; Serre’s uniformity; Modularity; Galois representation; Level lowering; Hilbert modular forms; Primary 11F80; Secondary 11G05; 11F41;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} be a totally real field, and let S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} be a finite set of non-archimedean places of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. It follows from the work of Merel, Momose and David that there is a constant BK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{K,S}$$\end{document} so that if E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is an elliptic curve defined over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, semistable outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, then for all p>BK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>B_{K,S}$$\end{document}, the representation ρ¯E,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p}$$\end{document} is irreducible. We combine this with modularity and level lowering to show the existence of an effectively computable constant CK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{K,S}$$\end{document}, and an effectively computable set of elliptic curves over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} with CM E1,⋯,En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1,\cdots ,E_n$$\end{document} such that the following holds. If E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is an elliptic curve over K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} semistable outside S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, and p>CK,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>C_{K,S}$$\end{document} is prime, then either ρ¯E,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p}$$\end{document} is surjective, or ρ¯E,p∼ρ¯Ei,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }_{E,p} \sim \overline{\rho }_{E_i,p}$$\end{document} for some i=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\dots ,n$$\end{document}.
引用
收藏
页码:193 / 199
页数:6
相关论文
共 50 条
[21]   QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS [J].
Achter, Jeffrey D. ;
Wong, Siman .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) :1395-1412
[22]   GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS [J].
Shparlinski, Igor E. ;
Voloch, Jose Felipe .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04) :657-670
[23]   Orchards in elliptic curves over finite fields [J].
Padmanabhan, R. ;
Shukla, Alok .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
[24]   Fermat?s Last Theorem and modular curves over real quadratic fields [J].
Michaud-Jacobs, Philippe .
ACTA ARITHMETICA, 2022, 203 (04) :319-351
[25]   ON ZAGIER'S CONJECTURE FOR BASE CHANGES OF ELLIPTIC CURVES [J].
Brunault, Francois .
DOCUMENTA MATHEMATICA, 2013, 18 :395-412
[26]   A NEW ASPECT OF CHEBYSHEV'S BIAS FOR ELLIPTIC CURVES OVER FUNCTION FIELDS [J].
Kaneko, Ikuya ;
Koyama, Shin-Ya .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, :5059-5068
[27]   Elliptic curves and class fields of real quadratic fields: Algorithms and evidence [J].
Darmon, H ;
Green, P .
EXPERIMENTAL MATHEMATICS, 2002, 11 (01) :37-55
[28]   TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS [J].
Gonzalez-Jimenez, Enrique ;
Najman, Filip ;
Tornero, Jose M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) :1899-1917
[29]   Torsion of rational elliptic curves over quadratic fields [J].
Enrique González-Jiménez ;
José M. Tornero .
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 :923-934
[30]   Tamagawa Products for Elliptic Curves Over Number Fields [J].
Choi, Yunseo ;
Li, Sean ;
Panidapu, Apoorva ;
Siegel, Casia .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2024, 36 (02) :361-404