A non-type (D) operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document}

被引:0
作者
Orestes Bueno
B. F. Svaiter
机构
[1] Instituto de Matématica Pura e Aplicada (IMPA),
关键词
Maximal monotone; Type (D); Banach space; Extension; Bidual; 47H05; 49J52;
D O I
10.1007/s10107-013-0661-0
中图分类号
学科分类号
摘要
Previous examples of non-type (D) maximal monotone operators were restricted to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}, and Banach spaces containing isometric copies of these spaces. This fact led to the conjecture that non-type (D) operators were restricted to this class of Banach spaces. We present a linear non-type (D) operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document}.
引用
收藏
页码:81 / 88
页数:7
相关论文
共 14 条
[1]  
Bauschke HH(1999)Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators Pac. J. Math. 189 1-20
[2]  
Borwein JM(2010)Fifty years of maximal monotonicity Optim. Lett. 4 473-490
[3]  
Borwein JM(2012)A maximal monotone operator of type (D) for which maximal monotone extension to the bidual is not of type (D) J. Convex Anal. 19 295-300
[4]  
Bueno O.(1995)Some properties of maximal monotone operators on nonreflexive Banach spaces Set-Valued Anal. 3 51-69
[5]  
Svaiter B.F.(1971)Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs J. Math. Anal. Appl. 34 371-395
[6]  
Fitzpatrick S(1972)On the range of a coercive maximal monotone operator in a nonreflexive Banach space Proc. Am. Math. Soc. 35 88-92
[7]  
Phelps RR(1976)On a convexity property of the range of a maximal monotone operator Proc. Am. Math. Soc. 55 359-360
[8]  
Gossez JP(1977)On the extensions to the bidual of a maximal monotone operator Proc. Am. Math. Soc. 62 67-71
[9]  
Gossez JP(1996)The range of a monotone operator J. Math. Anal. Appl. 199 176-201
[10]  
Gossez JP(2010)Linear monotone subspaces of locally convex spaces Set-Valued Var. Anal. 18 29-55