Long-Time Dynamics of a Plate Equation with Memory and Time Delay

被引:0
作者
Baowei Feng
机构
[1] Southwestern University of Finance and Economics,Department of Economic Mathematics
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2018年 / 49卷
关键词
Plate equation; Memory; Delay; Global attractor; Exponential attractor; 35B41; 74Dxx; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
A plate equation with past history and time-varying delay in the internal feedback is considered. The main result is the long-time dynamics of the system. Under suitable assumptions on real numbers μ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _1$$\end{document} and μ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2$$\end{document}, we establish the quasi-stability property of the system and obtain the existence of a global attractor which has finite fractal dimension. We also prove the existence of exponential attractors.
引用
收藏
页码:395 / 418
页数:23
相关论文
共 50 条
[31]   Long-time behavior of the Cahn–Hilliard equation with dynamic boundary condition [J].
Alain Miranville ;
Hao Wu .
Journal of Elliptic and Parabolic Equations, 2020, 6 :283-309
[32]   LONG-TIME BEHAVIOR OF A NONLOCAL CAHN-HILLIARD EQUATION WITH REACTION [J].
Iuorio, Annalisa ;
Melchionna, Stefano .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) :3765-3788
[33]   Long-Time Behavior for a Thermoelastic Microbeam Problem with Time Delay and the Coleman-Gurtin Thermal Law [J].
Liu, Wenjun ;
Chen, Dongqin ;
Chen, Zhijing .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) :609-632
[34]   Long-Time Behavior for a Thermoelastic Microbeam Problem with Time Delay and the Coleman-Gurtin Thermal Law [J].
Wenjun Liu ;
Dongqin Chen ;
Zhijing Chen .
Acta Mathematica Scientia, 2021, 41 :609-632
[35]   Well-Posedness and Long-Time Dynamics of a Water-Waves Model With Time-Varying Boundary Delay [J].
Bautista, George J. ;
Capistrano-Filho, Roberto de A. ;
Chentouf, Boumediene ;
Fonseca, Oscar Sierra .
ASYMPTOTIC ANALYSIS, 2025,
[36]   LONG-TIME DYNAMICS FOR A CLASS OF EXTENSIBLE BEAMS WITH NONLOCAL NONLINEAR DAMPING [J].
Jorge da Silva, Marcio Antonio ;
Narciso, Vando .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (03) :437-470
[38]   Long-Time Dynamics of Balakrishnan–Taylor Extensible Beams [J].
E. H. Gomes Tavares ;
M. A. Jorge Silva ;
V. Narciso .
Journal of Dynamics and Differential Equations, 2020, 32 :1157-1175
[39]   Long-time behavior of a quasilinear viscoelastic equation with past history [J].
Araujo, Rawlilson de Oliveira ;
Ma, To Fu ;
Qin, Yuming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (10) :4066-4087
[40]   Long-time behavior of solutions of some doubly nonlinear equation [J].
Novruzov, Emil .
APPLICABLE ANALYSIS, 2007, 86 (10) :1265-1281