Biconservative Hypersurfaces in E14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}^4_1$$\end{document} with Non-diagonalizable Shape Operator

被引:0
作者
Aykut Kayhan
Nurettin Cenk Turgay
机构
[1] Marmara Eğitim Köyü,Faculty of Education, Mathematics and Science Education Department
[2] Istanbul Technical University,Department of Mathematics, Faculty of Science and Letters
关键词
Biconservative hypersurfaces; non-diagonalizable shape operator; Minkowski space; biharmonic isometric immersions; 53C42 (Primary); 53B25;
D O I
10.1007/s00009-023-02286-5
中图分类号
学科分类号
摘要
In this paper, we study biconservative isometric immersions into Minkowski 4-space E14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}_1^4$$\end{document}. We obtain the local classification of biconservative hypersurfaces with non-diagonalizable shape operator. As a result, we complete the local study of biconservative hypersurfaces of E14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}_1^4$$\end{document} initiated in Fu and Turgay (Int J Math 27:1650041, 2016). We also get some results considering the intrinsic properties of this class of hypersurfaces.
引用
收藏
相关论文
共 24 条
  • [1] Arvanitoyeorgos A(2007)Biharmonic Lorentz hypersurfaces in Pac. J. Math. 229 293-305
  • [2] Defever F(2014)Surfaces in the three-dimensional space forms with divergence-free stress-bienergy tensor Ann. Mat. Pura Appl. 193 529-550
  • [3] Kaimakamis G(2017)On Biconservative Lorentz hypersurface with non-diagonalizable shape operator Mediterr. J. Math. 14 127-79
  • [4] Papantoniou VJ(1983)Selected topics in harmonic maps, CBMS, 50 Am. Math. Soc. 1983 76-822
  • [5] Caddeo R(2013)On bi-conservative surfaces in Minkowski 3-space J. Geom. Phys. 66 71-402
  • [6] Montaldo S(2015)Explicit classification of biconservative surfaces in Lorentz 3-space forms Ann. Mat. Pura Appl. 194 805-225
  • [7] Oniciuc C(2016)Complete classification of biconservative hypersurfaces with diagonalizable shape operator in the Minkowski 4-space Int. J. Math. 27 1650041-329
  • [8] Piu P(1986)-harmonic maps and their first and second variational formulas Chin. Ann. Math. Ser. A 7 389-432
  • [9] Deepika K(1987)The conservation law for Acta Math. Sin. 30 220-581
  • [10] Eells J(1995)-harmonic maps between Riemannian manifolds Pac. J. Math. 118 1-undefined