Convergent perturbation theory for a q-deformed anharmonic oscillator

被引:0
作者
Dick R. [1 ]
Pollok-Narayanan A. [1 ,2 ]
Steinacker H. [1 ]
Wess J. [1 ,2 ]
机构
[1] Sektion Physik der Ludwig-M., D-80333 München
[2] Max-Planck-Institut für Physik, D-80805 München
关键词
Quantum Mechanic; Perturbation Theory; Perturbation Series; Anharmonic Oscillator; Exact Eigenstates;
D O I
10.1007/s100529801003
中图分类号
学科分类号
摘要
A q-deformed anharmonic oscillator is defined within the framework of q-deformed quantum mechanics. It is shown that the Rayleigh-Schrödinger perturbation series for the bounded spectrum converges to exact eigenstates and eigenvalues, for q close to 1. The radius of convergence becomes zero in the undeformed limit.
引用
收藏
页码:363 / 368
页数:5
相关论文
共 15 条
[1]  
Bender C.M., Wu T.T., Large Order Behavior of Perturbation Theory, PRL, 27, 1, (1971)
[2]  
Bender C.M., Wu T.T., Anharmonic Oszillator, Phys. Rev., 184, 5, (1969)
[3]  
Loeffel J.J., Martin A., Simon B., Wightman A.S., Pade approximants and the anharmonic oscillator, Physics Letters, 30 B, (1969)
[4]  
Fichtmuller M., Lorek A., Wess J., Q-deformed Phase Space and Its Lattice Structure
[5]  
Cerchiai B.L., Wess J., q-deformed Minkowski space based on a q-deformed Lorentz algebra, Europ. Journ. of Physics C
[6]  
Macfarlane A.J., On q-analogues of the quantum harmonic oscillator and quantum group SU(2)<sub>q</sub>, J. Phys. A, 22, (1989)
[7]  
Biedenharn L.C., The quantum group SU<sub>q</sub>(2) and a q-analogue of the boson operators, J. Phys. A, 22, (1989)
[8]  
Lorek A., Ruffing A., Wess J., A q-deformation of the Harmonic Oscillator
[9]  
Hebecker A., Schreckenberg S., Schwenk J., Weich W., Wess J., Representations of a q-deformed Heisenberg algebra, Z. Phys. C, 64, pp. 355-359, (1994)
[10]  
Seifert J., q-deformierte Ein-Teilchen Quantenmechanik, (1996)