SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines

被引:0
作者
Jérôme Audoux
Mikaël Salson
Christophe F. Grosset
Sacha Beaumeunier
Jean-Marc Holder
Thérèse Commes
Nicolas Philippe
机构
[1] CHRU de Montpellier -Hopital St Eloi,SeqOne, IRMB
[2] Institute of Computational Biology,undefined
[3] University Lille,undefined
[4] CNRS,undefined
[5] Centrale Lille,undefined
[6] Inria,undefined
[7] UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille,undefined
[8] University Bordeaux,undefined
来源
BMC Bioinformatics | / 18卷
关键词
RNA-Seq; Transcriptomics; Benchmark; Pipeline optimization;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 165 条
[1]  
Byron SA(2016)Translating RNA sequencing into clinical diagnostics: Opportunities and challenges Nat Rev Genet 17 257-71
[2]  
Van Keuren-Jensen KR(2014)A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium Nat Biotechnol 32 903-14
[3]  
Engelthaler DM(2016)A survey of best practices for RNA-seq data analysis Genome Biol 17 13-77
[4]  
Carpten JD(2011)Computational methods for transcriptome annotation and quantification using RNA-seq Nat Methods 8 469-91
[5]  
Craig DW(2015)Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data Genome Biol 16 150-28
[6]  
Conesa A(2013)Systematic evaluation of spliced alignment programs for RNA-seq data Nat Methods 10 1185-51
[7]  
Madrigal P(2014)Comparison of mapping algorithms used in high-throughput sequencing: Application to Ion Torrent data BMC Genomics 15 264-16
[8]  
Tarazona S(2011)Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM) Bioinformatics (Oxford, England) 27 2518-83
[9]  
Gomez-Cabrero D(2013)Reliable Identification of Genomic Variants from RNA-Seq Data Am J Human Genet 93 641-30
[10]  
Cervera A(2013)Development of Strategies for SNP Detection in RNA-Seq Data: Application to Lymphoblastoid Cell Lines and Evaluation Using 1000 Genomes Data PLOS ONE 8 58815-2